from shiny import App, Inputs, Outputs, Session, reactive, render, req, ui import datasets from datasets import load_dataset import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import numpy as np from scipy.stats import gaussian_kde import matplotlib from matplotlib.ticker import MaxNLocator from matplotlib.gridspec import GridSpec from scipy.stats import zscore import math import matplotlib from adjustText import adjust_text import matplotlib.ticker as mtick from shinywidgets import output_widget, render_widget import pandas as pd from configure import base_url import shinyswatch import inflect from matplotlib.pyplot import text def percentile(n): def percentile_(x): return np.nanpercentile(x, n) percentile_.__name__ = 'percentile_%s' % n return percentile_ colour_palette = ['#FFB000','#648FFF','#785EF0', '#DC267F','#FE6100','#3D1EB2','#894D80','#16AA02','#B5592B','#A3C1ED'] print('Starting Everything:') # exit_velo_df = milb_a_ev_df.append([triple_a_ev_df,double_a_ev_df,a_high_a_ev_df,single_a_ev_df]).reset_index(drop=True) # player_df_all = mlb_a_player_df.append([triple_a_player_df,double_a_player_df,a_high_a_player_df,single_a_player_df]).reset_index(drop=True) # exit_velo_df = pd.read_csv('exit_velo_df_all.csv',index_col=[0]) # player_df_all = pd.read_csv('player_df_all.csv',index_col=[0]) # pa_df = pd.read_csv('pa_df_all.csv',index_col=[0]) # pa_df_full_na = pa_df.dropna() ### Import Datasets dataset = load_dataset('nesticot/mlb_data', data_files=['mlb_pitch_data_2023.csv', ]) dataset_train = dataset['train'] exit_velo_df_mlb = dataset_train.to_pandas().set_index(list(dataset_train.features.keys())[0]).reset_index(drop=True) #print(df_2023) exit_velo_df_mlb['level'] = 'MLB' ### Import Datasets dataset = load_dataset('nesticot/mlb_data', data_files=['aaa_pitch_data_2023.csv', ]) dataset_train = dataset['train'] exit_velo_df_aaa = dataset_train.to_pandas().set_index(list(dataset_train.features.keys())[0]).reset_index(drop=True) #print(df_2023) exit_velo_df_aaa['level'] = 'AAA' ### Import Datasets dataset = load_dataset('nesticot/mlb_data', data_files=['aa_pitch_data_2023.csv', ]) dataset_train = dataset['train'] exit_velo_df_aa = dataset_train.to_pandas().set_index(list(dataset_train.features.keys())[0]).reset_index(drop=True) #print(df_2023) exit_velo_df_aa['level'] = 'AA' ### Import Datasets dataset = load_dataset('nesticot/mlb_data', data_files=['high_a_pitch_data_2023.csv', ]) dataset_train = dataset['train'] exit_velo_df_ha = dataset_train.to_pandas().set_index(list(dataset_train.features.keys())[0]).reset_index(drop=True) #print(df_2023) exit_velo_df_ha['level'] = 'A+' ### Import Datasets dataset = load_dataset('nesticot/mlb_data', data_files=['a_pitch_data_2023.csv', ]) dataset_train = dataset['train'] exit_velo_df_a = dataset_train.to_pandas().set_index(list(dataset_train.features.keys())[0]).reset_index(drop=True) #print(df_2023) exit_velo_df_a['level'] = 'A' exit_velo_df = pd.concat([exit_velo_df_mlb,exit_velo_df_aaa,exit_velo_df_aa,exit_velo_df_ha,exit_velo_df_a]) # exit_velo_df_copy = exit_velo_df.copy() # exit_velo_df = exit_velo_df_copy.copy() end_codes = ['strikeout', 'field_out', 'single', 'walk', 'hit_by_pitch', 'double', 'sac_fly', 'force_out', 'home_run', 'grounded_into_double_play', 'fielders_choice', 'field_error', 'triple', 'sac_bunt', 'double_play', 'intent_walk', 'fielders_choice_out', 'strikeout_double_play', 'sac_fly_double_play', 'catcher_interf', 'other_out'] exit_velo_df['pa'] = exit_velo_df.event_type.isin(end_codes) #exit_velo_df['pa'] = 1 exit_velo_df['k'] = exit_velo_df.event_type.isin(list(filter(None, [x if 'strikeout' in x else '' for x in exit_velo_df.event_type.fillna('None').unique()]))) exit_velo_df['bb'] = exit_velo_df.event_type.isin(list(filter(None, [x if 'walk' in x else '' for x in exit_velo_df.event_type.fillna('None').unique()]))) exit_velo_df['k_minus_bb'] = exit_velo_df['k'].astype(np.float32)-exit_velo_df['bb'].astype(np.float32) exit_velo_df = exit_velo_df.drop_duplicates(subset=['play_id']) swing_codes = ['Swinging Strike', 'In play, no out', 'Foul', 'In play, out(s)', 'In play, run(s)', 'Swinging Strike (Blocked)', 'Foul Bunt','Foul Tip', 'Missed Bunt','Foul Pitchout','Swinging Pitchout'] swings_in = ['Swinging Strike', 'In play, no out', 'Foul', 'In play, out(s)', 'In play, run(s)', 'Swinging Strike (Blocked)', 'Foul Bunt','Foul Tip', 'Missed Bunt','Foul Pitchout','Swinging Pitchout'] swing_strike_codes = ['Swinging Strike', 'Swinging Strike (Blocked)','Missed Bunt','Foul Tip','Swinging Pitchout'] contact_codes = ['In play, no out', 'Foul', 'In play, out(s)', 'In play, run(s)', 'Foul Bunt'] codes_in = ['In play, out(s)', 'Swinging Strike', 'Ball', 'Foul', 'In play, no out', 'Called Strike', 'Foul Tip', 'In play, run(s)', 'Hit By Pitch', 'Ball In Dirt', 'Pitchout', 'Swinging Strike (Blocked)', 'Foul Bunt', 'Missed Bunt', 'Foul Pitchout', 'Intent Ball', 'Swinging Pitchout'] exit_velo_df['in_zone'] = exit_velo_df['zone'] < 10 exit_velo_df = exit_velo_df.drop_duplicates(subset=['play_id']) exit_velo_df_codes = exit_velo_df[exit_velo_df.play_description.isin(codes_in)].dropna(subset=['in_zone']) exit_velo_df_codes['bip'] = ~exit_velo_df_codes.launch_speed.isna() conditions = [ (exit_velo_df_codes['launch_speed'].isna()), (exit_velo_df_codes['launch_speed']*1.5 - exit_velo_df_codes['launch_angle'] >= 117 ) & (exit_velo_df_codes['launch_speed'] + exit_velo_df_codes['launch_angle'] >= 124) & (exit_velo_df_codes['launch_speed'] > 98) & (exit_velo_df_codes['launch_angle'] >= 8) & (exit_velo_df_codes['launch_angle'] <= 50) ] choices = [False,True] exit_velo_df_codes['barrel'] = np.select(conditions, choices, default=np.nan) conditions_ss = [ (exit_velo_df_codes['launch_angle'].isna()), (exit_velo_df_codes['launch_angle'] >= 8 ) * (exit_velo_df_codes['launch_angle'] <= 32 ) ] choices_ss = [False,True] exit_velo_df_codes['sweet_spot'] = np.select(conditions_ss, choices_ss, default=np.nan) conditions_hh = [ (exit_velo_df_codes['launch_speed'].isna()), (exit_velo_df_codes['launch_speed'] >= 94.5 ) ] choices_hh = [False,True] exit_velo_df_codes['hard_hit'] = np.select(conditions_hh, choices_hh, default=np.nan) conditions_tb = [ (exit_velo_df_codes['event_type']=='single'), (exit_velo_df_codes['event_type']=='double'), (exit_velo_df_codes['event_type']=='triple'), (exit_velo_df_codes['event_type']=='home_run'), ] choices_tb = [1,2,3,4] exit_velo_df_codes['tb'] = np.select(conditions_tb, choices_tb, default=np.nan) conditions_woba = [ (exit_velo_df_codes['event_type']=='walk'), (exit_velo_df_codes['event_type']=='hit_by_pitch'), (exit_velo_df_codes['event_type']=='single'), (exit_velo_df_codes['event_type']=='double'), (exit_velo_df_codes['event_type']=='triple'), (exit_velo_df_codes['event_type']=='home_run'), ] choices_woba = [0.705, 0.688, 0.897, 1.233, 1.612, 2.013] exit_velo_df_codes['woba'] = np.select(conditions_woba, choices_woba, default=np.nan) woba_codes = ['strikeout', 'field_out', 'single', 'walk', 'hit_by_pitch', 'double', 'sac_fly', 'force_out', 'home_run', 'grounded_into_double_play', 'fielders_choice', 'field_error', 'triple', 'sac_bunt', 'double_play', 'fielders_choice_out', 'strikeout_double_play', 'sac_fly_double_play', 'other_out'] conditions_woba_code = [ (exit_velo_df_codes['event_type'].isin(woba_codes)) ] choices_woba_code = [1] exit_velo_df_codes['woba_codes'] = np.select(conditions_woba_code, choices_woba_code, default=np.nan) #exit_velo_df_codes['barrel'] = (exit_velo_df_codes.launch_speed >= 98) & (exit_velo_df_codes.launch_angle >= (26 - (-98 + exit_velo_df_codes.launch_speed))) & (exit_velo_df_codes.launch_angle <= 30 + (-98 + exit_velo_df_codes.launch_speed)) & (exit_velo_df_codes.launch_angle >= 8) & (exit_velo_df_codes.launch_angle <= 50) #exit_velo_df_codes['barrel'] = (exit_velo_df_codes.launch_speed >= 98) & (exit_velo_df_codes.launch_angle >= (26 - (-98 + exit_velo_df_codes.launch_speed))) & (exit_velo_df_codes.launch_angle <= 30 + (-98 + exit_velo_df_codes.launch_speed)) & (exit_velo_df_codes.launch_angle >= 8) & (exit_velo_df_codes.launch_angle <= 50) exit_velo_df_codes['pitches'] = 1 exit_velo_df_codes['whiffs'] = [1 if ((x == 'S')|(x == 'W')|(x =='T')) else 0 for x in exit_velo_df_codes.play_code] exit_velo_df_codes['csw'] = [1 if ((x == 'S')|(x == 'W')|(x =='T')|(x == 'C')) else 0 for x in exit_velo_df_codes.play_code] exit_velo_df_codes['swings'] = [1 if x in swings_in else 0 for x in exit_velo_df_codes.play_description] exit_velo_df_codes['out_zone'] = exit_velo_df_codes.in_zone == False exit_velo_df_codes['zone_swing'] = (exit_velo_df_codes.in_zone == True)&(exit_velo_df_codes.swings == 1) exit_velo_df_codes['zone_contact'] = (exit_velo_df_codes.in_zone == True)&(exit_velo_df_codes.swings == 1)&(exit_velo_df_codes.whiffs == 0) exit_velo_df_codes['ozone_swing'] = (exit_velo_df_codes.in_zone==False)&(exit_velo_df_codes.swings == 1) exit_velo_df_codes['ozone_contact'] = (exit_velo_df_codes.in_zone==False)&(exit_velo_df_codes.swings == 1)&(exit_velo_df_codes.whiffs == 0) exit_velo_df_codes_summ = exit_velo_df_codes.groupby(['pitcher_id','pitcher_name','level']).agg( pa = ('pa','sum'), k = ('k','sum'), bb = ('bb','sum'), k_minus_bb = ('k_minus_bb','sum'), csw = ('csw','sum'), bip = ('bip','sum'), tb = ('tb','sum'), woba = ('woba','sum'), woba_codes = ('woba_codes','sum'), hard_hit = ('hard_hit','sum'), barrel = ('barrel','sum'), sweet_spot = ('sweet_spot','sum'), max_launch_speed = ('launch_speed','max'), launch_speed_90 = ('launch_speed',percentile(90)), launch_speed = ('launch_speed','mean'), launch_angle = ('launch_angle','mean'), pitches = ('pitches','sum'), swings = ('swings','sum'), in_zone = ('in_zone','sum'), out_zone = ('out_zone','sum'), whiffs = ('whiffs','sum'), zone_swing = ('zone_swing','sum'), zone_contact = ('zone_contact','sum'), ozone_swing = ('ozone_swing','sum'), ozone_contact = ('ozone_contact','sum'), ).reset_index() exit_velo_df_codes_summ['k_percent'] = [exit_velo_df_codes_summ.k[x]/exit_velo_df_codes_summ.pa[x] if exit_velo_df_codes_summ.pa[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))] exit_velo_df_codes_summ['bb_percent'] =[exit_velo_df_codes_summ.bb[x]/exit_velo_df_codes_summ.pa[x] if exit_velo_df_codes_summ.pa[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))] exit_velo_df_codes_summ['k_minus_bb_percent'] =[exit_velo_df_codes_summ.k_minus_bb[x]/exit_velo_df_codes_summ.pa[x] if exit_velo_df_codes_summ.pa[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))] exit_velo_df_codes_summ['sweet_spot_percent'] = [exit_velo_df_codes_summ.sweet_spot[x]/exit_velo_df_codes_summ.bip[x] if exit_velo_df_codes_summ.bip[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))] exit_velo_df_codes_summ['woba_percent'] = [exit_velo_df_codes_summ.woba[x]/exit_velo_df_codes_summ.woba_codes[x] if exit_velo_df_codes_summ.woba_codes[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))] exit_velo_df_codes_summ['hard_hit_percent'] = [exit_velo_df_codes_summ.hard_hit[x]/exit_velo_df_codes_summ.bip[x] if exit_velo_df_codes_summ.bip[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))] exit_velo_df_codes_summ['csw_percent'] = [exit_velo_df_codes_summ.csw[x]/exit_velo_df_codes_summ.pitches[x] if exit_velo_df_codes_summ.pitches[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))] exit_velo_df_codes_summ['barrel_percent'] = exit_velo_df_codes_summ.barrel = [exit_velo_df_codes_summ.barrel[x]/exit_velo_df_codes_summ.bip[x] if exit_velo_df_codes_summ.bip[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))] exit_velo_df_codes_summ['zone_contact_percent'] = [exit_velo_df_codes_summ.zone_contact[x]/exit_velo_df_codes_summ.zone_swing[x] if exit_velo_df_codes_summ.zone_swing[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))] exit_velo_df_codes_summ['zone_swing_percent'] = [exit_velo_df_codes_summ.zone_swing[x]/exit_velo_df_codes_summ.in_zone[x] if exit_velo_df_codes_summ.pitches[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))] exit_velo_df_codes_summ['zone_percent'] = [exit_velo_df_codes_summ.in_zone[x]/exit_velo_df_codes_summ.pitches[x] if exit_velo_df_codes_summ.pitches[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))] exit_velo_df_codes_summ['chase_percent'] = [exit_velo_df_codes_summ.ozone_swing[x]/(exit_velo_df_codes_summ.pitches[x] - exit_velo_df_codes_summ.in_zone[x]) if (exit_velo_df_codes_summ.pitches[x]- exit_velo_df_codes_summ.in_zone[x]) != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))] exit_velo_df_codes_summ['chase_contact'] = [exit_velo_df_codes_summ.ozone_contact[x]/exit_velo_df_codes_summ.ozone_swing[x] if exit_velo_df_codes_summ.ozone_swing[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))] exit_velo_df_codes_summ['swing_percent'] = [exit_velo_df_codes_summ.swings[x]/exit_velo_df_codes_summ.pitches[x] if exit_velo_df_codes_summ.pitches[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))] exit_velo_df_codes_summ['whiff_rate'] = [exit_velo_df_codes_summ.whiffs[x]/exit_velo_df_codes_summ.swings[x] if exit_velo_df_codes_summ.swings[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))] exit_velo_df_codes_summ['swstr_rate'] = [exit_velo_df_codes_summ.whiffs[x]/exit_velo_df_codes_summ.pitches[x] if exit_velo_df_codes_summ.pitches[x] != 0 else np.nan for x in range(len(exit_velo_df_codes_summ))] exit_velo_df_codes_summ = exit_velo_df_codes_summ.dropna(subset=['bip']) print('whiffing') print(exit_velo_df_codes_summ['whiff_rate']) exit_velo_df_codes_summ.head() woba_list = ['woba'] pa_list = ['k','bb','k_minus_bb','bb_minus_k'] balls_in_play_list = ['hard_hit','launch_speed','launch_speed_90','launch_angle','barrel','sweet_spot'] pitches_list = ['zone_percent','swing_percent','sw_str','csw'] swings_list = ['whiff_percent'] in_zone_pitches_list = ['zone_swing'] in_zone_swings_list = ['zone_contact'] out_zone_pitches_list = ['chase_percent'] out_zone_swings_list = ['chase_contact'] plot_dict = { 'k':{'x_axis':'Plate Appearances','y_axis':'K%','title':'K%','x_value':'k','x_range':[0.0,0.1,0.2,0.3,0.4],'percent':True,'percentile_label':'k_percent','flip_p':False,'percentile':False}, 'bb':{'x_axis':'Plate Appearances','y_axis':'BB%','title':'BB%','x_value':'bb','x_range':[0.0,0.1,0.2,0.3],'percent':True,'percentile_label':'bb_percent','flip_p':True,'percentile':False}, 'csw':{'x_axis':'Pitches','y_axis':'CSW%','title':'CSW%','x_value':'csw','x_range':[.2,.25,.3,.35,.4],'percent':True,'percentile_label':'csw_percent','flip_p':False,'percentile':False}, 'launch_speed':{'x_axis':'Balls In Play','y_axis':'Exit Velocity','title':'Exit Velocity','x_value':'launch_speed','x_range':[85,90,95,100,105],'percent':True,'percentile_label':'launch_speed','flip_p':True,'percentile':False}, 'launch_speed_90':{'x_axis':'Balls In Play','y_axis':'90th Percentile Exit Velocity','title':'90th Percentile Exit Velocity','x_value':'launch_speed','x_range':[90,95,100,105,110,115,120],'percent':False,'percentile_label':'launch_speed_90','flip_p':True,'percentile':True}, 'sweet_spot':{'x_axis':'Balls In Play','y_axis':'SweetSpot%','title':'SweetSpot%','x_value':'sweet_spot','x_range':[0.2,0.3,0.4,0.5,0.6],'percent':True,'percentile_label':'sweet_spot_percent','flip_p':True,'percentile':False}, 'launch_angle':{'x_axis':'Balls In Play','y_axis':'Launch Angle','title':'Launch Angle','x_value':'launch_angle','x_range':[-20,-10,0,10,20],'percent':False,'percentile_label':'launch_angle','flip_p':True,'percentile':False}, 'barrel':{'x_axis':'Balls In Play','y_axis':'Barrel%','title':'Barrel%','x_value':'barrel','x_range':[0,0.05,0.10,.15,.20,.25,.30],'percent':True,'percentile_label':'barrel_percent','flip_p':False,'percentile':False}, 'zone_percent':{'x_axis':'Pitches','y_axis':'Zone%','title':'Zone%','x_value':'in_zone','x_range':[0.3,0.4,0.5,0.6,0.7],'percent':True,'percentile_label':'zone_percent','flip_p':True,'percentile':False}, 'swing_percent':{'x_axis':'Pitches','y_axis':'Swing%','title':'Swing%','x_value':'swings','x_range':[0.2,0.3,0.4,0.5,0.6,0.7,0.8],'percent':True,'percentile_label':'swing_percent','flip_p':False,'percentile':False}, 'whiff_percent':{'x_axis':'Swings','y_axis':'Whiff%','title':'Whiff%','x_value':'whiffs','x_range':[0.0,0.1,0.2,0.3,0.4,0.5],'percent':True,'percentile_label':'whiff_rate','flip_p':False,'percentile':False}, 'sw_str':{'x_axis':'Pitches','y_axis':'SwStr%','title':'SwStr%','x_value':'whiffs','x_range':[0.0,0.05,0.1,0.15,0.2,0.25],'percent':True,'percentile_label':'swstr_rate','flip_p':False,'percentile':False}, 'zone_swing':{'x_axis':'In-Zone Pitches','y_axis':'Z-Swing%','title':'Z-Swing%','x_value':'zone_swing','x_range':[0.3,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1],'percent':True,'percentile_label':'zone_swing_percent','flip_p':True,'percentile':False}, 'zone_contact':{'x_axis':'In-Zone Swings','y_axis':'Z-Contact%','title':'Z-Contact%','x_value':'zone_contact','x_range':[0.5,0.6,0.7,0.8,0.9,1],'percent':True,'percentile_label':'zone_contact_percent','flip_p':True,'percentile':False}, 'chase_percent':{'x_axis':'Out-of-Zone Pitches','y_axis':'O-Swing%','title':'O-Swing%','x_value':'ozone_swing','x_range':[0.0,0.1,0.2,0.3,0.4,0.5],'percent':True,'percentile_label':'chase_percent','flip_p':False,'percentile':False}, 'chase_contact':{'x_axis':'Out-of-Zone Swings','y_axis':'O-Contact%','title':'O-Contact%','x_value':'ozone_contact','x_range':[0.2,0.3,0.4,0.5,0.6,0.7,0.8],'percent':True,'percentile_label':'chase_contact','flip_p':True,'percentile':False},} test_df = exit_velo_df.sort_values(by='pitcher_name').drop_duplicates(subset='pitcher_id').reset_index(drop=True)[['pitcher_id','pitcher_name']]#['pitcher'].to_dict() test_df = test_df.set_index('pitcher_id') #test_df = test_df[test_df.pitcher == 'Chris Bassitt'].append(test_df[test_df.pitcher != 'Chris Bassitt']) batter_dict = test_df['pitcher_name'].to_dict() level_dict = {'MLB':'MLB','AAA':'AAA','AA':'AA','A+':'A+','A':'A'} plot_dict_small = { 'k':'K%', 'bb':'BB%', 'csw':'CSW%', 'launch_speed':'Exit Velocity', 'launch_speed_90':'90th Percentile Exit Velocity', 'sweet_spot':'SweetSpot%', 'launch_angle':'Launch Angle', 'zone_percent':'Zone%', 'barrel':'Barrel%', 'swing_percent':'Swing%', 'whiff_percent':'Whiff%', 'sw_str':'SwStr%', 'zone_swing':'Z-Swing%', 'zone_contact':'Z-Contact%', 'chase_percent':'O-Swing%', 'chase_contact':'O-Contact%',} def server(input,output,session): @output @render.plot(alt="A histogram") @reactive.event(input.go, ignore_none=False) def plot(): # np.random.seed(19680801) # x = 100 + 15 * np.random.randn(437) # fig, ax = plt.subplots() # ax.hist(x, input.n(), density=True) # return fig sns.set_theme(style="whitegrid", palette="pastel") if input.id() is "": fig = plt.figure(figsize=(12, 12)) fig.text(s='Please Select a Pitcher',x=0.5,y=0.5) return swing_min = int(input.n()) fig, ax = plt.subplots(1, 1, figsize=(10, 10)) fig.set_facecolor('white') #ax.set_facecolor('white') #fig.patch.set_facecolor('lightblue') print(input.stat_id()) if input.stat_id() in pa_list: print('we hAVE MADE IT TO THIS PART OF THE CODE') if input.stat_id() in pa_list: elly_zone_df = exit_velo_df_codes[(exit_velo_df_codes.pa==1)&(exit_velo_df_codes.pitcher_id == int(input.id()))&(exit_velo_df_codes.level==input.level_id())] divisor_x = 'pa' print('this is short') print(elly_zone_df) if input.stat_id() in balls_in_play_list: elly_zone_df = exit_velo_df_codes[(exit_velo_df_codes.bip)&(exit_velo_df_codes.pitcher_id == int(input.id()))&(exit_velo_df_codes.level==input.level_id())] divisor_x = 'bip' #print('this is short') if input.stat_id() in balls_in_play_list: elly_zone_df = exit_velo_df_codes[(exit_velo_df_codes.bip)&(exit_velo_df_codes.pitcher_id == int(input.id()))&(exit_velo_df_codes.level==input.level_id())] divisor_x = 'bip' print('this is short') if input.stat_id() in pitches_list: elly_zone_df = exit_velo_df_codes[(exit_velo_df_codes.pitches == 1)&(exit_velo_df_codes.pitcher_id == int(input.id()))&(exit_velo_df_codes.level==input.level_id())] divisor_x = 'pitches' if input.stat_id() in swings_list: elly_zone_df = exit_velo_df_codes[(exit_velo_df_codes.swings == 1)&(exit_velo_df_codes.pitcher_id == int(input.id()))&(exit_velo_df_codes.level==input.level_id())] divisor_x = 'swings' if input.stat_id() in in_zone_pitches_list: elly_zone_df = exit_velo_df_codes[(exit_velo_df_codes.in_zone)&(exit_velo_df_codes.pitcher_id == int(input.id()))&(exit_velo_df_codes.level==input.level_id())] divisor_x = 'in_zone' if input.stat_id() in in_zone_swings_list: elly_zone_df = exit_velo_df_codes[(exit_velo_df_codes.zone_swing)&(exit_velo_df_codes.pitcher_id == int(input.id()))&(exit_velo_df_codes.level==input.level_id())] divisor_x = 'zone_swing' if input.stat_id() in out_zone_pitches_list: elly_zone_df = exit_velo_df_codes[(exit_velo_df_codes.in_zone == False)&(exit_velo_df_codes.pitcher_id == int(input.id()))&(exit_velo_df_codes.level==input.level_id())] divisor_x = 'out_zone' if input.stat_id() in out_zone_swings_list: elly_zone_df = exit_velo_df_codes[(exit_velo_df_codes.ozone_swing)&(exit_velo_df_codes.pitcher_id == int(input.id()))&(exit_velo_df_codes.level==input.level_id())] divisor_x = 'ozone_swing' # penguins = sns.load_dataset("penguins") # sns.histplot(data=penguins, x="flipper_length_mm") # print('we made it here:') # print(int(input.id())) # print(input.stat_id()) # print(input.level_id()) # print(exit_velo_df_codes[(exit_velo_df_codes.pitcher_id == int(input.id()))&(exit_velo_df_codes.level==input.level_id())]) # print(exit_velo_df_codes.columns) # print(elly_zone_df[plot_dict[input.stat_id()]["x_value"]].sum()) exit_velo_df_codes_summ_new = exit_velo_df_codes_summ.copy() exit_velo_df_codes_summ_new = exit_velo_df_codes_summ_new.set_index('pitcher_id','pitcher','level') exit_velo_df_codes_summ_new = exit_velo_df_codes_summ_new[exit_velo_df_codes_summ_new[divisor_x] >= int(input.n())] exit_velo_df_codes_summ_new = exit_velo_df_codes_summ_new[exit_velo_df_codes_summ_new.level==input.level_id()] exit_velo_df_codes_summ_rank = exit_velo_df_codes_summ_new.rank(method='max',ascending=False) exit_velo_df_codes_summ_rank.columns = exit_velo_df_codes_summ_rank.columns+['_rank'] exit_velo_df_codes_summ_rank_percent = exit_velo_df_codes_summ_new.rank(pct=True) exit_velo_df_codes_summ_rank_percent.columns = exit_velo_df_codes_summ_rank_percent.columns+['_percent'] exit_velo_df_codes_summ_new = exit_velo_df_codes_summ_new.reset_index() exit_velo_df_codes_summ_rank = exit_velo_df_codes_summ_rank.reset_index() exit_velo_df_codes_summ_rank_percent = exit_velo_df_codes_summ_rank_percent.reset_index() print('Table columns:') exit_velo_df_codes_summ_new.pitcher_id = exit_velo_df_codes_summ_new.pitcher_id.astype(int) exit_velo_df_codes_summ_rank.pitcher_id = exit_velo_df_codes_summ_rank.pitcher_id.astype(int) exit_velo_df_codes_summ_rank_percent.pitcher_id = exit_velo_df_codes_summ_rank_percent.pitcher_id.astype(int) print('Table columns2:') exit_velo_df_codes_summ_new = exit_velo_df_codes_summ_new.merge(exit_velo_df_codes_summ_rank,left_on=['pitcher_id'],right_on=['pitcher_id'],how='left',suffixes=['','_rank']) exit_velo_df_codes_summ_new = exit_velo_df_codes_summ_new.merge(exit_velo_df_codes_summ_rank_percent,left_on=['pitcher_id'],right_on=['pitcher_id'],how='left',suffixes=['','_percent']) print(exit_velo_df_codes_summ_new) print(exit_velo_df_codes_summ_rank) print(exit_velo_df_codes_summ_rank_percent) #sns.scatterplot(x=data_df.launch_speed_90,y=data_df.zone_contact,color=colour_palette[0],s=75,label=int(input.id())) exit_velo_df_codes_summ_new_select = exit_velo_df_codes_summ_new[exit_velo_df_codes_summ_new.pitcher_id == int(input.id())].reset_index(drop=True) print('whiffing') print(exit_velo_df_codes) print('Player _df:') print(exit_velo_df_codes_summ_new_select) if len(exit_velo_df_codes_summ_new_select) < 1: ax.text(x=0.5,y=0.5,s='Please Select Different Parameters to Produce a plot',fontsize=18,ha='center') return p = inflect.engine() exit_velo_df_codes_summ_new_select = exit_velo_df_codes_summ_new_select.loc[:,~exit_velo_df_codes_summ_new_select.columns.duplicated(keep='last')].copy() print('Table for the player:') print(list(exit_velo_df_codes_summ_new_select.columns)) print(plot_dict[input.stat_id()]["percentile_label"]) print(plot_dict[input.stat_id()]["percentile_label"]+'_percent') print(exit_velo_df_codes_summ_new_select) print(1*plot_dict[input.stat_id()]["flip_p"]) print(round(exit_velo_df_codes_summ_new_select[plot_dict[input.stat_id()]["percentile_label"]+"_percent"][0],2)) print((1*plot_dict[input.stat_id()]["flip_p"]-round(exit_velo_df_codes_summ_new_select[plot_dict[input.stat_id()]["percentile_label"]+"_percent"][0],2))*100) # print(exit_velo_df_codes_summ_new_select[plot_dict[input.stat_id()]["percentile_label"]+'_percent']) if plot_dict[input.stat_id()]['percent']: label_1=f'{input.level_id()} Average {exit_velo_df_codes[exit_velo_df_codes.level == input.level_id()][plot_dict[input.stat_id()]["x_value"]].sum()/exit_velo_df_codes[exit_velo_df_codes.level == input.level_id()][divisor_x].sum():.1%}' label_2=f'{batter_dict[int(input.id())]} Average {elly_zone_df[plot_dict[input.stat_id()]["x_value"]].sum()/elly_zone_df[divisor_x].sum():.1%} ({p.ordinal(abs(int((1*plot_dict[input.stat_id()]["flip_p"]-round(exit_velo_df_codes_summ_new_select[plot_dict[input.stat_id()]["percentile_label"]+"_percent"][0],2))*100)))} Percentile)' #label_2=f'{batter_dict[int(input.id())]} Average {elly_zone_df[plot_dict[input.stat_id()]["x_value"]].sum()/elly_zone_df[divisor_x].sum():.1%}' ax.yaxis.set_major_formatter(mtick.PercentFormatter(1)) else: label_1=f'{input.level_id()} Average {exit_velo_df_codes[exit_velo_df_codes.level == input.level_id()][plot_dict[input.stat_id()]["x_value"]].sum()/exit_velo_df_codes[exit_velo_df_codes.level == input.level_id()][divisor_x].sum():.1f}' label_2=f'{batter_dict[int(input.id())]} Average {elly_zone_df[plot_dict[input.stat_id()]["x_value"]].sum()/elly_zone_df[divisor_x].sum():.1f} ({p.ordinal(abs(int((1*plot_dict[input.stat_id()]["flip_p"]-round(exit_velo_df_codes_summ_new_select[plot_dict[input.stat_id()]["percentile_label"]+"_percent"][0],2))*100)))} Percentile)' #label_2=f'{batter_dict[int(input.id())]} Average {elly_zone_df[plot_dict[input.stat_id()]["x_value"]].sum()/elly_zone_df[divisor_x].sum():.1f}' #ax.yaxis.set_major_formatter(mtick.int) if plot_dict[input.stat_id()]['percentile']: label_1=f'{input.level_id()} Average {exit_velo_df_codes[exit_velo_df_codes.level == input.level_id()][plot_dict[input.stat_id()]["x_value"]].quantile(0.9):.1f}' label_2=f'{batter_dict[int(input.id())]} Average {elly_zone_df[plot_dict[input.stat_id()]["x_value"]].quantile(0.9):.1f} ({p.ordinal(abs(int((1*plot_dict[input.stat_id()]["flip_p"]-round(exit_velo_df_codes_summ_new_select[plot_dict[input.stat_id()]["percentile_label"]+"_percent"][0],2))*100)))} Percentile)' #label_2=f'{batter_dict[int(input.id())]} Average {elly_zone_df[plot_dict[input.stat_id()]["x_value"]].sum()/elly_zone_df[divisor_x].sum():.1%}' #ax.yaxis.set_major_formatter(mtick.int) print(plot_dict[input.stat_id()]["x_value"]) print(divisor_x) # exit_velo_df_codes_summ_new = exit_velo_df_codes_summ.copy() # exit_velo_df_codes_summ_new = exit_velo_df_codes_summ_new[exit_velo_df_codes_summ_new.balls_in_play >= int(input.n())] # exit_velo_df_codes_summ_new = exit_velo_df_codes_summ_new[exit_velo_df_codes_summ_new.level==input.level_id()] print('this is here:') print(exit_velo_df_codes_summ_new.head()) print(exit_velo_df_codes_summ_new.columns) if plot_dict[input.stat_id()]["flip_p"] == False: ax.hlines(y=(exit_velo_df_codes_summ_new[plot_dict[input.stat_id()]["percentile_label"]]).quantile(0.9),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[2],linestyle='dotted',alpha=0.5) ax.hlines(y=(exit_velo_df_codes_summ_new[plot_dict[input.stat_id()]["percentile_label"]]).quantile(0.75),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[3],linestyle='dotted',alpha=0.5) ax.hlines(y=(exit_velo_df_codes_summ_new[plot_dict[input.stat_id()]["percentile_label"]]).quantile(0.25),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[4],linestyle='dotted',alpha=0.5) ax.hlines(y=(exit_velo_df_codes_summ_new[plot_dict[input.stat_id()]["percentile_label"]]).quantile(0.1),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[5],linestyle='dotted',alpha=0.5) hard_hit_dates = [(exit_velo_df_codes_summ_new[plot_dict[input.stat_id()]["percentile_label"]]).quantile(0.9), (exit_velo_df_codes_summ_new[plot_dict[input.stat_id()]["percentile_label"]]).quantile(0.75), (exit_velo_df_codes_summ_new[plot_dict[input.stat_id()]["percentile_label"]]).quantile(0.25), (exit_velo_df_codes_summ_new[plot_dict[input.stat_id()]["percentile_label"]]).quantile(0.1)] hard_hit_text = ['90th %','75th %','25th %','10th %'] for i, x in enumerate(hard_hit_dates): text(min(input.n()+input.n()/100,+input.n()+1), x ,hard_hit_text[i], rotation=0, ha='left', bbox=dict(facecolor='white',alpha=0.5, edgecolor=colour_palette[2+i], pad=2)) if plot_dict[input.stat_id()]["flip_p"] == True: ax.hlines(y=(exit_velo_df_codes_summ_new[plot_dict[input.stat_id()]["percentile_label"]]).quantile(0.1),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[2],linestyle='dotted',alpha=0.5) ax.hlines(y=(exit_velo_df_codes_summ_new[plot_dict[input.stat_id()]["percentile_label"]]).quantile(0.25),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[3],linestyle='dotted',alpha=0.5) ax.hlines(y=(exit_velo_df_codes_summ_new[plot_dict[input.stat_id()]["percentile_label"]]).quantile(0.75),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[4],linestyle='dotted',alpha=0.5) ax.hlines(y=(exit_velo_df_codes_summ_new[plot_dict[input.stat_id()]["percentile_label"]]).quantile(0.9),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[5],linestyle='dotted',alpha=0.5) hard_hit_dates = [(exit_velo_df_codes_summ_new[plot_dict[input.stat_id()]["percentile_label"]]).quantile(0.9), (exit_velo_df_codes_summ_new[plot_dict[input.stat_id()]["percentile_label"]]).quantile(0.75), (exit_velo_df_codes_summ_new[plot_dict[input.stat_id()]["percentile_label"]]).quantile(0.25), (exit_velo_df_codes_summ_new[plot_dict[input.stat_id()]["percentile_label"]]).quantile(0.1)] hard_hit_text = ['10th %','25th %','75th %','90th %'] for i, x in enumerate(hard_hit_dates): text(min(input.n()+input.n()/100,input.n()+input.n()+3), x ,hard_hit_text[i], rotation=0, ha='left', bbox=dict(facecolor='white',alpha=0.5, edgecolor=colour_palette[2+i], pad=2)) if plot_dict[input.stat_id()]["percentile"] == False: ax.hlines(y=exit_velo_df_codes[exit_velo_df_codes.level == input.level_id()][plot_dict[input.stat_id()]["x_value"]].sum()/exit_velo_df_codes[exit_velo_df_codes.level == input.level_id()][divisor_x].sum(),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[1],linestyle='-.',label=label_1) ax.hlines(y=elly_zone_df[plot_dict[input.stat_id()]["x_value"]].sum()/elly_zone_df[divisor_x].sum(),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[0],linestyle='--',label=label_2) sns.lineplot(x=range(1,len(elly_zone_df)+1),y=elly_zone_df[plot_dict[input.stat_id()]["x_value"]].fillna(0).rolling(window=swing_min).sum()/swing_min,color=colour_palette[0],linewidth=3,ax=ax) if plot_dict[input.stat_id()]["percentile"] == True: ax.hlines(y=exit_velo_df_codes[exit_velo_df_codes.level == input.level_id()][plot_dict[input.stat_id()]["x_value"]].quantile(0.9),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[1],linestyle='-.',label=label_1) ax.hlines(y=elly_zone_df[plot_dict[input.stat_id()]["x_value"]].fillna(0).quantile(0.9),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[0],linestyle='--',label=label_2) sns.lineplot(x=range(1,len(elly_zone_df)+1),y=elly_zone_df[plot_dict[input.stat_id()]["x_value"]].fillna(0).rolling(window=swing_min).quantile(0.9),color=colour_palette[0],linewidth=3,ax=ax) #ax.set_xlim(input.n(),exit_velo_df_small.pitch.max()) #plt.yticks([0,0.2,0.4,0.6,0.8,1]) #ax.set_ylim(math.floor((min(exit_velo_df_codes_summ.zone_contact)/5)*100)*5/100,1) ax.set_xlim(math.floor(swing_min),len(elly_zone_df)) ax.set_title(f'{batter_dict[int(input.id())]} - {input.level_id()} - {swing_min} {plot_dict[input.stat_id()]["x_axis"]} Rolling {plot_dict[input.stat_id()]["title"]}', fontsize=16,fontname='Century Gothic',) #vals = ax.get_yticks() ax.set_xlabel(plot_dict[input.stat_id()]['x_axis'], fontsize=16,fontname='Century Gothic') ax.set_ylabel(plot_dict[input.stat_id()]['y_axis'], fontsize=16,fontname='Century Gothic') #fig.axes[0].invert_yaxis() #fig.subplots_adjust(wspace=.02, hspace=.02) #ax.xaxis.set_major_formatter(FuncFormatter(lambda x, _: int(x))) ax.set_yticks(plot_dict[input.stat_id()]["x_range"]) #fig.colorbar(plot_dist, ax=ax) #fig.colorbar(plot_dist) #fig.axes[0].invert_yaxis() ax.legend(fontsize='16') fig.text(x=0.03,y=0.02,s='By: @TJStats',fontname='Century Gothic') fig.text(x=1-0.03,y=0.02,s='Data: MLB',ha='right',fontname='Century Gothic') fig.tight_layout() rolling_pitcher = App(ui.page_fluid( ui.tags.base(href=base_url), ui.tags.div( {"style": "width:90%;margin: 0 auto;max-width: 1600px;"}, ui.tags.style( """ h4 { margin-top: 1em;font-size:35px; } h2{ font-size:25px; } """ ), shinyswatch.theme.simplex(), ui.tags.h4("TJStats"), ui.tags.i("Baseball Analytics and Visualizations"), ui.markdown("""Support me on Patreon for Access to 2024 Apps1"""), ui.navset_tab( ui.nav_control( ui.a( "Home", href="home/" ), ), ui.nav_menu( "Batter Charts", ui.nav_control( ui.a( "Batting Rolling", href="rolling_batter/" ), ui.a( "Spray & Damage", href="spray/" ), ui.a( "Decision Value", href="decision_value/" ), # ui.a( # "Damage Model", # href="damage_model/" # ), ui.a( "Batter Scatter", href="batter_scatter/" ), # ui.a( # "EV vs LA Plot", # href="ev_angle/" # ), ui.a( "Statcast Compare", href="statcast_compare/" ) ), ), ui.nav_menu( "Pitcher Charts", ui.nav_control( ui.a( "Pitcher Rolling", href="rolling_pitcher/" ), ui.a( "Pitcher Summary", href="pitching_summary_graphic_new/" ), ui.a( "Pitcher Scatter", href="pitcher_scatter/" ) ), )),ui.row( ui.layout_sidebar( ui.panel_sidebar( ui.input_select("id", "Select Pitcher",batter_dict,selected=675911,width=1,size=1,selectize=True), ui.input_select("level_id", "Select Level",level_dict,width=1,size=1), ui.input_select("stat_id", "Select Stat",plot_dict_small,width=1,size=1), ui.input_numeric("n", "Rolling Window Size", value=50), ui.input_action_button("go", "Generate",class_="btn-primary"), ui.output_table("result") ), ui.panel_main( ui.output_plot("plot",height = "1000px",width="1000px") ), )),)),server)