# Copyright (c) Facebook, Inc. and its affiliates. import itertools import json import logging import numpy as np import os from collections import OrderedDict from typing import Optional, Union import pycocotools.mask as mask_util import torch from PIL import Image from detectron2.data import DatasetCatalog, MetadataCatalog from detectron2.utils.comm import all_gather, is_main_process, synchronize from detectron2.utils.file_io import PathManager from .evaluator import DatasetEvaluator _CV2_IMPORTED = True try: import cv2 # noqa except ImportError: # OpenCV is an optional dependency at the moment _CV2_IMPORTED = False def load_image_into_numpy_array( filename: str, copy: bool = False, dtype: Optional[Union[np.dtype, str]] = None, ) -> np.ndarray: with PathManager.open(filename, "rb") as f: array = np.array(Image.open(f), copy=copy, dtype=dtype) return array class SemSegEvaluator(DatasetEvaluator): """ Evaluate semantic segmentation metrics. """ def __init__( self, dataset_name, distributed=True, output_dir=None, *, sem_seg_loading_fn=load_image_into_numpy_array, num_classes=None, ignore_label=None, ): """ Args: dataset_name (str): name of the dataset to be evaluated. distributed (bool): if True, will collect results from all ranks for evaluation. Otherwise, will evaluate the results in the current process. output_dir (str): an output directory to dump results. sem_seg_loading_fn: function to read sem seg file and load into numpy array. Default provided, but projects can customize. num_classes, ignore_label: deprecated argument """ self._logger = logging.getLogger(__name__) if num_classes is not None: self._logger.warn( "SemSegEvaluator(num_classes) is deprecated! It should be obtained from metadata." ) if ignore_label is not None: self._logger.warn( "SemSegEvaluator(ignore_label) is deprecated! It should be obtained from metadata." ) self._dataset_name = dataset_name self._distributed = distributed self._output_dir = output_dir self._cpu_device = torch.device("cpu") self.input_file_to_gt_file = { dataset_record["file_name"]: dataset_record["sem_seg_file_name"] for dataset_record in DatasetCatalog.get(dataset_name) } meta = MetadataCatalog.get(dataset_name) # Dict that maps contiguous training ids to COCO category ids try: c2d = meta.stuff_dataset_id_to_contiguous_id self._contiguous_id_to_dataset_id = {v: k for k, v in c2d.items()} except AttributeError: self._contiguous_id_to_dataset_id = None self._class_names = meta.stuff_classes self.sem_seg_loading_fn = sem_seg_loading_fn self._num_classes = len(meta.stuff_classes) if num_classes is not None: assert self._num_classes == num_classes, f"{self._num_classes} != {num_classes}" self._ignore_label = ignore_label if ignore_label is not None else meta.ignore_label # This is because cv2.erode did not work for int datatype. Only works for uint8. self._compute_boundary_iou = True if not _CV2_IMPORTED: self._compute_boundary_iou = False self._logger.warn( """Boundary IoU calculation requires OpenCV. B-IoU metrics are not going to be computed because OpenCV is not available to import.""" ) if self._num_classes >= np.iinfo(np.uint8).max: self._compute_boundary_iou = False self._logger.warn( f"""SemSegEvaluator(num_classes) is more than supported value for Boundary IoU calculation! B-IoU metrics are not going to be computed. Max allowed value (exclusive) for num_classes for calculating Boundary IoU is. {np.iinfo(np.uint8).max} The number of classes of dataset {self._dataset_name} is {self._num_classes}""" ) def reset(self): self._conf_matrix = np.zeros((self._num_classes + 1, self._num_classes + 1), dtype=np.int64) self._b_conf_matrix = np.zeros( (self._num_classes + 1, self._num_classes + 1), dtype=np.int64 ) self._predictions = [] def process(self, inputs, outputs): """ Args: inputs: the inputs to a model. It is a list of dicts. Each dict corresponds to an image and contains keys like "height", "width", "file_name". outputs: the outputs of a model. It is either list of semantic segmentation predictions (Tensor [H, W]) or list of dicts with key "sem_seg" that contains semantic segmentation prediction in the same format. """ for input, output in zip(inputs, outputs): output = output["sem_seg"].argmax(dim=0).to(self._cpu_device) pred = np.array(output, dtype=int) gt_filename = self.input_file_to_gt_file[input["file_name"]] gt = self.sem_seg_loading_fn(gt_filename, dtype=int) gt[gt == self._ignore_label] = self._num_classes self._conf_matrix += np.bincount( (self._num_classes + 1) * pred.reshape(-1) + gt.reshape(-1), minlength=self._conf_matrix.size, ).reshape(self._conf_matrix.shape) if self._compute_boundary_iou: b_gt = self._mask_to_boundary(gt.astype(np.uint8)) b_pred = self._mask_to_boundary(pred.astype(np.uint8)) self._b_conf_matrix += np.bincount( (self._num_classes + 1) * b_pred.reshape(-1) + b_gt.reshape(-1), minlength=self._conf_matrix.size, ).reshape(self._conf_matrix.shape) self._predictions.extend(self.encode_json_sem_seg(pred, input["file_name"])) def evaluate(self): """ Evaluates standard semantic segmentation metrics (http://cocodataset.org/#stuff-eval): * Mean intersection-over-union averaged across classes (mIoU) * Frequency Weighted IoU (fwIoU) * Mean pixel accuracy averaged across classes (mACC) * Pixel Accuracy (pACC) """ if self._distributed: synchronize() conf_matrix_list = all_gather(self._conf_matrix) b_conf_matrix_list = all_gather(self._b_conf_matrix) self._predictions = all_gather(self._predictions) self._predictions = list(itertools.chain(*self._predictions)) if not is_main_process(): return self._conf_matrix = np.zeros_like(self._conf_matrix) for conf_matrix in conf_matrix_list: self._conf_matrix += conf_matrix self._b_conf_matrix = np.zeros_like(self._b_conf_matrix) for b_conf_matrix in b_conf_matrix_list: self._b_conf_matrix += b_conf_matrix if self._output_dir: PathManager.mkdirs(self._output_dir) file_path = os.path.join(self._output_dir, "sem_seg_predictions.json") with PathManager.open(file_path, "w") as f: f.write(json.dumps(self._predictions)) acc = np.full(self._num_classes, np.nan, dtype=float) iou = np.full(self._num_classes, np.nan, dtype=float) tp = self._conf_matrix.diagonal()[:-1].astype(float) pos_gt = np.sum(self._conf_matrix[:-1, :-1], axis=0).astype(float) class_weights = pos_gt / np.sum(pos_gt) pos_pred = np.sum(self._conf_matrix[:-1, :-1], axis=1).astype(float) acc_valid = pos_gt > 0 acc[acc_valid] = tp[acc_valid] / pos_gt[acc_valid] union = pos_gt + pos_pred - tp iou_valid = np.logical_and(acc_valid, union > 0) iou[iou_valid] = tp[iou_valid] / union[iou_valid] macc = np.sum(acc[acc_valid]) / np.sum(acc_valid) miou = np.sum(iou[iou_valid]) / np.sum(iou_valid) fiou = np.sum(iou[iou_valid] * class_weights[iou_valid]) pacc = np.sum(tp) / np.sum(pos_gt) if self._compute_boundary_iou: b_iou = np.full(self._num_classes, np.nan, dtype=float) b_tp = self._b_conf_matrix.diagonal()[:-1].astype(float) b_pos_gt = np.sum(self._b_conf_matrix[:-1, :-1], axis=0).astype(float) b_pos_pred = np.sum(self._b_conf_matrix[:-1, :-1], axis=1).astype(float) b_union = b_pos_gt + b_pos_pred - b_tp b_iou_valid = b_union > 0 b_iou[b_iou_valid] = b_tp[b_iou_valid] / b_union[b_iou_valid] res = {} res["mIoU"] = 100 * miou res["fwIoU"] = 100 * fiou for i, name in enumerate(self._class_names): res[f"IoU-{name}"] = 100 * iou[i] if self._compute_boundary_iou: res[f"BoundaryIoU-{name}"] = 100 * b_iou[i] res[f"min(IoU, B-Iou)-{name}"] = 100 * min(iou[i], b_iou[i]) res["mACC"] = 100 * macc res["pACC"] = 100 * pacc for i, name in enumerate(self._class_names): res[f"ACC-{name}"] = 100 * acc[i] if self._output_dir: file_path = os.path.join(self._output_dir, "sem_seg_evaluation.pth") with PathManager.open(file_path, "wb") as f: torch.save(res, f) results = OrderedDict({"sem_seg": res}) self._logger.info(results) return results def encode_json_sem_seg(self, sem_seg, input_file_name): """ Convert semantic segmentation to COCO stuff format with segments encoded as RLEs. See http://cocodataset.org/#format-results """ json_list = [] for label in np.unique(sem_seg): if self._contiguous_id_to_dataset_id is not None: assert ( label in self._contiguous_id_to_dataset_id ), "Label {} is not in the metadata info for {}".format(label, self._dataset_name) dataset_id = self._contiguous_id_to_dataset_id[label] else: dataset_id = int(label) mask = (sem_seg == label).astype(np.uint8) mask_rle = mask_util.encode(np.array(mask[:, :, None], order="F"))[0] mask_rle["counts"] = mask_rle["counts"].decode("utf-8") json_list.append( {"file_name": input_file_name, "category_id": dataset_id, "segmentation": mask_rle} ) return json_list def _mask_to_boundary(self, mask: np.ndarray, dilation_ratio=0.02): assert mask.ndim == 2, "mask_to_boundary expects a 2-dimensional image" h, w = mask.shape diag_len = np.sqrt(h**2 + w**2) dilation = max(1, int(round(dilation_ratio * diag_len))) kernel = np.ones((3, 3), dtype=np.uint8) padded_mask = cv2.copyMakeBorder(mask, 1, 1, 1, 1, cv2.BORDER_CONSTANT, value=0) eroded_mask_with_padding = cv2.erode(padded_mask, kernel, iterations=dilation) eroded_mask = eroded_mask_with_padding[1:-1, 1:-1] boundary = mask - eroded_mask return boundary