# Import required libraries import gradio as gr from transformers import pipeline import torch import threading import time import tensorflow as tf # Check GPU availability print(torch.cuda.is_available()) print(tf.test.gpu_device_name()) # Initialize the text generation pipeline with the specified model pipe = pipeline("text-generation", model="chargoddard/Yi-34B-Llama", device=0) # Rate limiting parameters rate_limit = 5 # Number of requests per second last_request_time = 0 def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): global last_request_time # Apply rate limiting elapsed_time = time.time() - last_request_time if elapsed_time < 1.0 / rate_limit: time.sleep(1.0 / rate_limit - elapsed_time) last_request_time = time.time() messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" # Generate the response using the pipeline result = pipe( messages[-1]["content"], max_length=max_tokens, num_return_sequences=1, temperature=temperature, top_p=top_p, ) response = result[0]['generated_text'] yield response # Gradio interface setup demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) # Launch the Gradio interface demo.launch()