## LIBRARIES ### ## Data import numpy as np from numpy.core.numeric import outer import pandas as pd import torch import pickle from tqdm import tqdm from math import floor from collections import defaultdict from transformers import AutoTokenizer #pd.set_option('precision', 2) #pd.options.display.float_format = '${:,.2f}'.format # Analysis # from gensim.models.doc2vec import Doc2Vec # from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score import nltk from nltk.cluster import KMeansClusterer import scipy.spatial.distance as sdist from scipy.spatial import distance_matrix # nltk.download('punkt') #make sure that punkt is downloaded # App & Visualization import streamlit as st import altair as alt import plotly.graph_objects as go from streamlit_vega_lite import altair_component # utils from random import sample from seal import utils as ut def down_samp(embedding): """Down sample a data frame for altiar visualization """ # total number of positive and negative sentiments in the class #embedding = embedding.groupby('slice').apply(lambda x: x.sample(frac=0.3)) total_size = embedding.groupby(['slice', 'label'], as_index=False).count() user_data = 0 # if 'Your Sentences' in str(total_size['slice']): # tmp = embedding.groupby(['slice'], as_index=False).count() # val = int(tmp[tmp['slice'] == "Your Sentences"]['source']) # user_data = val max_sample = total_size.groupby('slice').max()['content'] # # down sample to meeting altair's max values # # but keep the proportional representation of groups down_samp = 1/(sum(max_sample.astype(float))/(1000-user_data)) max_samp = max_sample.apply(lambda x: floor( x*down_samp)).astype(int).to_dict() max_samp['Your Sentences'] = user_data # # sample down for each group in the data frame embedding = embedding.groupby('slice').apply( lambda x: x.sample(n=max_samp.get(x.name))).reset_index(drop=True) # # order the embedding return(embedding) #down sample low loss points only so misclassified examples are not down sampled in viz def down_samp_ll(embedding): df_ll = embedding[embedding['slice'] == 'low-loss'] #if(len(df_ll)<5000): # return embedding #else: df_hl = embedding[embedding['slice'] == 'high-loss'] down_samp = len(df_ll) - (1000-len(df_hl)) df_ll.sample(n=down_samp) embedding.drop(df_ll.index) return embedding def data_comparison(df): selection = alt.selection_multi(fields=['cluster', 'label']) color = alt.condition(alt.datum.slice == 'high-loss', alt.Color('cluster:N', scale=alt.Scale( domain=df.cluster.unique().tolist()), legend=None), alt.value("lightgray")) opacity = alt.condition(selection, alt.value(0.7), alt.value(0.25)) # basic chart scatter = alt.Chart(df).mark_point(size=100, filled=True).encode( x=alt.X('x:Q', axis=None), y=alt.Y('y:Q', axis=None), color=color, shape=alt.Shape('label:N', scale=alt.Scale( range=['circle', 'diamond'])), tooltip=['cluster:N', 'slice:N', 'content:N', 'label:N', 'pred:N'], opacity=opacity ).properties( width=1000, height=800 ).interactive() legend = alt.Chart(df).mark_point(size=100, filled=True).encode( x=alt.X("label:N"), y=alt.Y('cluster:N', axis=alt.Axis( orient='right'), sort='ascending', title=''), shape=alt.Shape('label:N', scale=alt.Scale( range=['circle', 'diamond']), legend=None), color=color, ).add_selection( selection ) layered = scatter | legend layered = layered.configure_axis( grid=False ).configure_view( strokeOpacity=0 ) content = legend.encode(text='content:N') return layered def viz_panel(embedding_df): """ Visualization Panel Layout""" all_metrics = {} st.warning("**Error group visualization**") with st.expander("How to read this chart:"): st.markdown("* Each **point** is an input example.") st.markdown("* Gray points have low-loss and the colored have high-loss. High-loss instances are clustered using **kmeans** and each color represents a cluster.") st.markdown( "* The **shape** of each point reflects the label category -- positive (diamond) or negative sentiment (circle).") #st.altair_chart(data_comparison(down_samp(embedding_df)), use_container_width=True) viz = data_comparison(embedding_df) st.altair_chart(viz, use_container_width=True) @st.cache() def frequent_tokens(data, tokenizer, loss_quantile=0.95, top_k=200, smoothing=0.005): unique_tokens = [] tokens = [] for row in tqdm(data['content']): tokenized = tokenizer(row, padding=True, truncation=True, return_tensors='pt') tokens.append(tokenized['input_ids'].flatten()) unique_tokens.append(torch.unique(tokenized['input_ids'])) losses = data['loss'].astype(float) high_loss = losses.quantile(loss_quantile) loss_weights = np.where(losses > high_loss,losses,0.0) loss_weights = loss_weights / loss_weights.sum() token_frequencies = defaultdict(float) token_frequencies_error = defaultdict(float) weights_uniform = np.full_like(loss_weights, 1 / len(loss_weights)) for i in tqdm(range(len(data))): for token in unique_tokens[i]: token_frequencies[token.item()] += weights_uniform[i] token_frequencies_error[token.item()] += loss_weights[i] token_lrs = {k: (smoothing+token_frequencies_error[k]) / ( smoothing+token_frequencies[k]) for k in token_frequencies} tokens_sorted = list(map(lambda x: x[0], sorted( token_lrs.items(), key=lambda x: x[1])[::-1])) top_tokens = [] for i, (token) in enumerate(tokens_sorted[:top_k]): top_tokens.append(['%10s' % (tokenizer.decode(token)), '%.4f' % (token_frequencies[token]), '%.4f' % ( token_frequencies_error[token]), '%4.2f' % (token_lrs[token])]) return pd.DataFrame(top_tokens, columns=['token', 'freq', 'error-freq', 'ratio']) def load_precached_groups(data_ll, df_list, num_clusters, group_dict_path, group_idx_path, num_points=1000): merged = dynamic_groups(df_list, num_clusters) down_samp = len(data_ll) - (num_points-len(merged)) sample_idx = data_ll.sample(n=down_samp) data_ll = data_ll.drop(sample_idx.index) # put all the low loss data in one bigger cluster data_ll['cluster'] = merged.loc[merged['cluster'].idxmax()].cluster + 1 merged = pd.concat([merged, data_ll]) # merged['cluster'] = merged['cluster'].astype('str') # with open(group_dict_path, 'rb') as f: # group_dict = pickle.load(f) # with open(group_idx_path, 'rb') as f: # group_idx_dict = pickle.load(f) # for k,v in group_idx_dict.items(): # label = group_dict.get(k) # merged.loc[merged.index.isin(v), ['cluster']] = label return merged def dynamic_groups(df_list, num_clusters): merged = pd.DataFrame() ind = 0 for df in df_list: kmeans_df, assigned_clusters = kmeans(df, num_clusters=num_clusters) kmeans_df['cluster'] = kmeans_df['cluster'] + ind*num_clusters ind = ind+1 merged = pd.concat([merged, kmeans_df]) return merged @st.cache(ttl=600) def get_data(inference, emb): preds = inference.outputs.numpy() losses = inference.losses.numpy() embeddings = pd.DataFrame(emb, columns=['x', 'y']) num_examples = len(losses) # dataset_labels = [dataset[i]['label'] for i in range(num_examples)] return pd.concat([pd.DataFrame(np.transpose(np.vstack([dataset[:num_examples]['content'], dataset[:num_examples]['label'], preds, losses])), columns=['content', 'label', 'pred', 'loss']), embeddings], axis=1) def kmeans(data, num_clusters=3): X = np.array(data['embedding'].to_list()) kclusterer = KMeansClusterer( num_clusters, distance=nltk.cluster.util.cosine_distance, repeats=25, avoid_empty_clusters=True) assigned_clusters = kclusterer.cluster(X, assign_clusters=True) data['cluster'] = pd.Series( assigned_clusters, index=data.index).astype('int') data['centroid'] = data['cluster'].apply(lambda x: kclusterer.means()[x]) return data, assigned_clusters def distance_from_centroid(row): return sdist.norm(row['embedding'] - row['centroid'].tolist()) @st.cache(ttl=600) def craft_prompt(cluster_df): instruction = "In this task, we'll assign a short and precise label to a cluster of documents based on the topics or concepts most relevant to these documents. The documents are all subsets of a sentiment classification dataset.\n" if len(cluster_df) > 10: content = cluster_df['content'].str[:600].tolist() else: content = cluster_df['content'].str[:1000].tolist() examples = '\n - '.join(content) text = instruction + '- ' + examples + '\n Cluster label:' return text.strip() @st.cache(ttl=600) def topic_distribution(weights, smoothing=0.01): topic_frequencies = defaultdict(float) topic_frequencies_error = defaultdict(float) weights_uniform = np.full_like(weights, 1 / len(weights)) num_examples = len(weights) for i in range(num_examples): example = dataset[i] category = example['title'] topic_frequencies[category] += weights_uniform[i] topic_frequencies_error[category] += weights[i] topic_ratios = {c: (smoothing + topic_frequencies_error[c]) / ( smoothing + topic_frequencies[c]) for c in topic_frequencies} categories_sorted = map(lambda x: x[0], sorted( topic_ratios.items(), key=lambda x: x[1], reverse=True)) topic_distr = [] for category in categories_sorted: topic_distr.append(['%.3f' % topic_frequencies[category], '%.3f' % topic_frequencies_error[category], '%.2f' % topic_ratios[category], '%s' % category]) return pd.DataFrame(topic_distr, columns=['Overall frequency', 'Error frequency', 'Ratio', 'Category']) def populate_session(dataset, model): data_df = read_file_to_df( './assets/data/'+dataset + '_' + model+'.parquet') if model == 'albert-base-v2-yelp-polarity': tokenizer = AutoTokenizer.from_pretrained('textattack/'+model) else: tokenizer = AutoTokenizer.from_pretrained(model) # if "user_data" not in st.session_state: # st.session_state["user_data"] = data_df # if "selected_slice" not in st.session_state: # st.session_state["selected_slice"] = None return tokenizer @st.cache(allow_output_mutation=True) def read_file_to_df(file): return pd.read_parquet(file) if __name__ == "__main__": ### STREAMLIT APP CONGFIG ### st.set_page_config(layout="wide", page_title="Interactive Error Analysis") ut.init_style() lcol, rcol = st.columns([5, 2]) # ******* loading the mode and the data #st.sidebar.mardown("