import gradio as gr import torch import fire_network # Possible Scales for multiscale inference scales = [2.0, 1.414, 1.0, 0.707, 0.5, 0.353, 0.25] # Load net state = torch.load('fire.pth', map_location='cpu') state['net_params']['pretrained'] = None # no need for imagenet pretrained model net = fire_network.init_network(**state['net_params']).to(device) net.load_state_dict(state['state_dict']) transform = transforms.Compose([ transforms.Resize(1024), transforms.ToTensor(), transforms.Normalize(**dict(zip(["mean", "std"], net.runtime['mean_std']))) ]) # which sf sf_idx_ = [55, 14, 5, 4, 52, 57, 40, 9] col = plt.get_cmap('tab10') def generate_matching_superfeatures(im1, im2, scale_id=6, threshold=50): im1_tensor = transform(im1) im2_tensor = transform(im2) im1_cv = cv2.imread(im1) im2_cv = cv2.imread(im2) # extract features with torch.no_grad(): output1 = net.get_superfeatures(im1.to(device), scales=scales) feats1 = output1[0] attns1 = output1[1] strenghts1 = output1[2] output2 = net.get_superfeatures(im2.to(device), scales=scales) feats2 = output2[0] attns2 = output2[1] strenghts2 = output2[2] print(feats1.shape) print(attns1.shape) print(strenghts1.shape) # GRADIO APP title = "Visualizing Super-features" description = "TBD" article = "
" iface = gr.Interface( fn=generate_matching_superfeatures, inputs=[ gr.inputs.Image(shape=(240, 240), type="pil"), gr.inputs.Image(shape=(240, 240), type="pil"), gr.inputs.Slider(minimum=1, maximum=7, step=1, default=2, label="Scale"), gr.inputs.Slider(minimum=1, maximum=255, step=25, default=50, label="Binarizatio Threshold")], outputs="plot", enable_queue=True, title=title, description=description, article=article, examples=[["chateau_1.png", "chateau_2.png", 6, 50]], ) iface.launch()