# Copyright (C) 2024-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # # -------------------------------------------------------- # masst3r demo # -------------------------------------------------------- import spaces import os import sys import os.path as path import torch import tempfile import gradio import shutil import math HERE_PATH = path.normpath(path.dirname(__file__)) # noqa MASt3R_REPO_PATH = path.normpath(path.join(HERE_PATH, './mast3r')) # noqa sys.path.insert(0, MASt3R_REPO_PATH) # noqa from mast3r.demo import get_reconstructed_scene from mast3r.model import AsymmetricMASt3R from mast3r.utils.misc import hash_md5 import matplotlib.pyplot as pl pl.ion() # for gpu >= Ampere and pytorch >= 1.12 torch.backends.cuda.matmul.allow_tf32 = True batch_size = 1 weights_path = "naver/" + 'MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric' device = 'cuda' if torch.cuda.is_available() else 'cpu' model = AsymmetricMASt3R.from_pretrained(weights_path).to(device) chkpt_tag = hash_md5(weights_path) tmpdirname = tempfile.mkdtemp(suffix='_mast3r_gradio_demo') image_size = 512 silent = True gradio_delete_cache = 7200 class FileState: def __init__(self, outfile_name=None): self.outfile_name = outfile_name def __del__(self): if self.outfile_name is not None and os.path.isfile(self.outfile_name): os.remove(self.outfile_name) self.outfile_name = None @spaces.GPU() def local_get_reconstructed_scene(filelist, min_conf_thr, matching_conf_thr, as_pointcloud, cam_size, shared_intrinsics, **kw): lr1 = 0.07 niter1 = 500 lr2 = 0.014 niter2 = 200 optim_level = 'refine' mask_sky, clean_depth, transparent_cams = False, True, False if len(filelist) < 5: scenegraph_type = 'complete' winsize = 1 else: scenegraph_type = 'logwin' half_size = math.ceil((len(filelist) - 1) / 2) max_winsize = max(1, math.ceil(math.log(half_size, 2))) winsize = min(5, max_winsize) refid = 0 win_cyclic = False scene_state, outfile = get_reconstructed_scene(tmpdirname, gradio_delete_cache, model, device, silent, image_size, None, filelist, optim_level, lr1, niter1, lr2, niter2, min_conf_thr, matching_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, scenegraph_type, winsize, win_cyclic, refid, TSDF_thresh=0, shared_intrinsics=shared_intrinsics, **kw) filestate = FileState(scene_state.outfile_name) scene_state.outfile_name = None del scene_state return filestate, outfile css = """.gradio-container {margin: 0 !important; min-width: 100%};""" title = "MASt3R Demo" with gradio.Blocks(css=css, title=title, delete_cache=(gradio_delete_cache, gradio_delete_cache)) as demo: filestate = gradio.State(None) gradio.HTML('