import functools import numpy as np import cv2 import math arr = np.array def image_scale(pts, scale): def __loop(x, y): return [x[0] * y, x[1] * y] return list(map(functools.partial(__loop, y=1/scale), pts)) def image_resize(img, height=500): pixels = height * height shape = list(np.shape(img)) scale = math.sqrt(float(pixels)/float(shape[0]*shape[1])) shape[0] *= scale shape[1] *= scale img = cv2.resize(img, (int(shape[1]), int(shape[0]))) img_shape = np.shape(img) return img, img_shape, scale def image_transform(img, points, square_length=150): board_length = square_length * 8 def __dis(a, b): return np.linalg.norm(arr(a)-arr(b)) def __shi(seq, n=0): return seq[-(n % len(seq)):] + seq[:-(n % len(seq))] best_idx, best_val = 0, 10**6 for idx, val in enumerate(points): val = __dis(val, [0, 0]) if val < best_val: best_idx, best_val = idx, val pts1 = np.float32(__shi(points, 4 - best_idx)) pts2 = np.float32([[0, 0], [board_length, 0], [board_length, board_length], [0, board_length]]) M = cv2.getPerspectiveTransform(pts1, pts2) W = cv2.warpPerspective(img, M, (board_length, board_length)) return W def crop(img, pts, scale): pts_orig = image_scale(pts, scale) img_crop = image_transform(img, pts_orig) return img_crop