#!/usr/bin/env python3 # -*- coding:utf-8 -*- import warnings from pathlib import Path import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from yolov6.layers.dbb_transforms import * class SiLU(nn.Module): '''Activation of SiLU''' @staticmethod def forward(x): return x * torch.sigmoid(x) class Conv(nn.Module): '''Normal Conv with SiLU activation''' def __init__(self, in_channels, out_channels, kernel_size, stride, groups=1, bias=False): super().__init__() padding = kernel_size // 2 self.conv = nn.Conv2d( in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, bias=bias, ) self.bn = nn.BatchNorm2d(out_channels) self.act = nn.SiLU() def forward(self, x): return self.act(self.bn(self.conv(x))) def forward_fuse(self, x): return self.act(self.conv(x)) class SimConv(nn.Module): '''Normal Conv with ReLU activation''' def __init__(self, in_channels, out_channels, kernel_size, stride, groups=1, bias=False): super().__init__() padding = kernel_size // 2 self.conv = nn.Conv2d( in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, bias=bias, ) self.bn = nn.BatchNorm2d(out_channels) self.act = nn.ReLU() def forward(self, x): return self.act(self.bn(self.conv(x))) def forward_fuse(self, x): return self.act(self.conv(x)) class SimSPPF(nn.Module): '''Simplified SPPF with ReLU activation''' def __init__(self, in_channels, out_channels, kernel_size=5): super().__init__() c_ = in_channels // 2 # hidden channels self.cv1 = SimConv(in_channels, c_, 1, 1) self.cv2 = SimConv(c_ * 4, out_channels, 1, 1) self.m = nn.MaxPool2d(kernel_size=kernel_size, stride=1, padding=kernel_size // 2) def forward(self, x): x = self.cv1(x) with warnings.catch_warnings(): warnings.simplefilter('ignore') y1 = self.m(x) y2 = self.m(y1) return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1)) class Transpose(nn.Module): '''Normal Transpose, default for upsampling''' def __init__(self, in_channels, out_channels, kernel_size=2, stride=2): super().__init__() self.upsample_transpose = torch.nn.ConvTranspose2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, bias=True ) def forward(self, x): return self.upsample_transpose(x) class Concat(nn.Module): def __init__(self, dimension=1): super().__init__() self.d = dimension def forward(self, x): return torch.cat(x, self.d) def conv_bn(in_channels, out_channels, kernel_size, stride, padding, groups=1): '''Basic cell for rep-style block, including conv and bn''' result = nn.Sequential() result.add_module('conv', nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, bias=False)) result.add_module('bn', nn.BatchNorm2d(num_features=out_channels)) return result class RepBlock(nn.Module): ''' RepBlock is a stage block with rep-style basic block ''' def __init__(self, in_channels, out_channels, n=1): super().__init__() self.conv1 = RepVGGBlock(in_channels, out_channels) self.block = nn.Sequential(*(RepVGGBlock(out_channels, out_channels) for _ in range(n - 1))) if n > 1 else None def forward(self, x): x = self.conv1(x) if self.block is not None: x = self.block(x) return x class RepVGGBlock(nn.Module): '''RepVGGBlock is a basic rep-style block, including training and deploy status This code is based on https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py ''' def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, dilation=1, groups=1, padding_mode='zeros', deploy=False, use_se=False): super(RepVGGBlock, self).__init__() """ Initialization of the class. Args: in_channels (int): Number of channels in the input image out_channels (int): Number of channels produced by the convolution kernel_size (int or tuple): Size of the convolving kernel stride (int or tuple, optional): Stride of the convolution. Default: 1 padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 1 dilation (int or tuple, optional): Spacing between kernel elements. Default: 1 groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1 padding_mode (string, optional): Default: 'zeros' deploy: Whether to be deploy status or training status. Default: False use_se: Whether to use se. Default: False """ self.deploy = deploy self.groups = groups self.in_channels = in_channels self.out_channels = out_channels assert kernel_size == 3 assert padding == 1 padding_11 = padding - kernel_size // 2 self.nonlinearity = nn.ReLU() if use_se: raise NotImplementedError("se block not supported yet") else: self.se = nn.Identity() if deploy: self.rbr_reparam = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=True, padding_mode=padding_mode) else: self.rbr_identity = nn.BatchNorm2d(num_features=in_channels) if out_channels == in_channels and stride == 1 else None self.rbr_dense = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups) self.rbr_1x1 = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride, padding=padding_11, groups=groups) def forward(self, inputs): '''Forward process''' if hasattr(self, 'rbr_reparam'): return self.nonlinearity(self.se(self.rbr_reparam(inputs))) if self.rbr_identity is None: id_out = 0 else: id_out = self.rbr_identity(inputs) return self.nonlinearity(self.se(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out)) def get_equivalent_kernel_bias(self): kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense) kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1) kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity) return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid def _pad_1x1_to_3x3_tensor(self, kernel1x1): if kernel1x1 is None: return 0 else: return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1]) def _fuse_bn_tensor(self, branch): if branch is None: return 0, 0 if isinstance(branch, nn.Sequential): kernel = branch.conv.weight running_mean = branch.bn.running_mean running_var = branch.bn.running_var gamma = branch.bn.weight beta = branch.bn.bias eps = branch.bn.eps else: assert isinstance(branch, nn.BatchNorm2d) if not hasattr(self, 'id_tensor'): input_dim = self.in_channels // self.groups kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32) for i in range(self.in_channels): kernel_value[i, i % input_dim, 1, 1] = 1 self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device) kernel = self.id_tensor running_mean = branch.running_mean running_var = branch.running_var gamma = branch.weight beta = branch.bias eps = branch.eps std = (running_var + eps).sqrt() t = (gamma / std).reshape(-1, 1, 1, 1) return kernel * t, beta - running_mean * gamma / std def switch_to_deploy(self): if hasattr(self, 'rbr_reparam'): return kernel, bias = self.get_equivalent_kernel_bias() self.rbr_reparam = nn.Conv2d(in_channels=self.rbr_dense.conv.in_channels, out_channels=self.rbr_dense.conv.out_channels, kernel_size=self.rbr_dense.conv.kernel_size, stride=self.rbr_dense.conv.stride, padding=self.rbr_dense.conv.padding, dilation=self.rbr_dense.conv.dilation, groups=self.rbr_dense.conv.groups, bias=True) self.rbr_reparam.weight.data = kernel self.rbr_reparam.bias.data = bias for para in self.parameters(): para.detach_() self.__delattr__('rbr_dense') self.__delattr__('rbr_1x1') if hasattr(self, 'rbr_identity'): self.__delattr__('rbr_identity') if hasattr(self, 'id_tensor'): self.__delattr__('id_tensor') self.deploy = True def conv_bn_v2(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, padding_mode='zeros'): conv_layer = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=False, padding_mode=padding_mode) bn_layer = nn.BatchNorm2d(num_features=out_channels, affine=True) se = nn.Sequential() se.add_module('conv', conv_layer) se.add_module('bn', bn_layer) return se class IdentityBasedConv1x1(nn.Conv2d): def __init__(self, channels, groups=1): super(IdentityBasedConv1x1, self).__init__(in_channels=channels, out_channels=channels, kernel_size=1, stride=1, padding=0, groups=groups, bias=False) assert channels % groups == 0 input_dim = channels // groups id_value = np.zeros((channels, input_dim, 1, 1)) for i in range(channels): id_value[i, i % input_dim, 0, 0] = 1 self.id_tensor = torch.from_numpy(id_value).type_as(self.weight) nn.init.zeros_(self.weight) def forward(self, input): kernel = self.weight + self.id_tensor.to(self.weight.device) result = F.conv2d(input, kernel, None, stride=1, padding=0, dilation=self.dilation, groups=self.groups) return result def get_actual_kernel(self): return self.weight + self.id_tensor.to(self.weight.device) class BNAndPadLayer(nn.Module): def __init__(self, pad_pixels, num_features, eps=1e-5, momentum=0.1, affine=True, track_running_stats=True): super(BNAndPadLayer, self).__init__() self.bn = nn.BatchNorm2d(num_features, eps, momentum, affine, track_running_stats) self.pad_pixels = pad_pixels def forward(self, input): output = self.bn(input) if self.pad_pixels > 0: if self.bn.affine: pad_values = self.bn.bias.detach() - self.bn.running_mean * self.bn.weight.detach() / torch.sqrt(self.bn.running_var + self.bn.eps) else: pad_values = - self.bn.running_mean / torch.sqrt(self.bn.running_var + self.bn.eps) output = F.pad(output, [self.pad_pixels] * 4) pad_values = pad_values.view(1, -1, 1, 1) output[:, :, 0:self.pad_pixels, :] = pad_values output[:, :, -self.pad_pixels:, :] = pad_values output[:, :, :, 0:self.pad_pixels] = pad_values output[:, :, :, -self.pad_pixels:] = pad_values return output @property def bn_weight(self): return self.bn.weight @property def bn_bias(self): return self.bn.bias @property def running_mean(self): return self.bn.running_mean @property def running_var(self): return self.bn.running_var @property def eps(self): return self.bn.eps class DBBBlock(nn.Module): ''' RepBlock is a stage block with rep-style basic block ''' def __init__(self, in_channels, out_channels, n=1): super().__init__() self.conv1 = DiverseBranchBlock(in_channels, out_channels) self.block = nn.Sequential(*(DiverseBranchBlock(out_channels, out_channels) for _ in range(n - 1))) if n > 1 else None def forward(self, x): x = self.conv1(x) if self.block is not None: x = self.block(x) return x class DiverseBranchBlock(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, dilation=1, groups=1, internal_channels_1x1_3x3=None, deploy=False, nonlinear=nn.ReLU(), single_init=False): super(DiverseBranchBlock, self).__init__() self.deploy = deploy if nonlinear is None: self.nonlinear = nn.Identity() else: self.nonlinear = nonlinear self.kernel_size = kernel_size self.out_channels = out_channels self.groups = groups assert padding == kernel_size // 2 if deploy: self.dbb_reparam = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=True) else: self.dbb_origin = conv_bn_v2(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups) self.dbb_avg = nn.Sequential() if groups < out_channels: self.dbb_avg.add_module('conv', nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0, groups=groups, bias=False)) self.dbb_avg.add_module('bn', BNAndPadLayer(pad_pixels=padding, num_features=out_channels)) self.dbb_avg.add_module('avg', nn.AvgPool2d(kernel_size=kernel_size, stride=stride, padding=0)) self.dbb_1x1 = conv_bn_v2(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride, padding=0, groups=groups) else: self.dbb_avg.add_module('avg', nn.AvgPool2d(kernel_size=kernel_size, stride=stride, padding=padding)) self.dbb_avg.add_module('avgbn', nn.BatchNorm2d(out_channels)) if internal_channels_1x1_3x3 is None: internal_channels_1x1_3x3 = in_channels if groups < out_channels else 2 * in_channels # For mobilenet, it is better to have 2X internal channels self.dbb_1x1_kxk = nn.Sequential() if internal_channels_1x1_3x3 == in_channels: self.dbb_1x1_kxk.add_module('idconv1', IdentityBasedConv1x1(channels=in_channels, groups=groups)) else: self.dbb_1x1_kxk.add_module('conv1', nn.Conv2d(in_channels=in_channels, out_channels=internal_channels_1x1_3x3, kernel_size=1, stride=1, padding=0, groups=groups, bias=False)) self.dbb_1x1_kxk.add_module('bn1', BNAndPadLayer(pad_pixels=padding, num_features=internal_channels_1x1_3x3, affine=True)) self.dbb_1x1_kxk.add_module('conv2', nn.Conv2d(in_channels=internal_channels_1x1_3x3, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=0, groups=groups, bias=False)) self.dbb_1x1_kxk.add_module('bn2', nn.BatchNorm2d(out_channels)) # The experiments reported in the paper used the default initialization of bn.weight (all as 1). But changing the initialization may be useful in some cases. if single_init: # Initialize the bn.weight of dbb_origin as 1 and others as 0. This is not the default setting. self.single_init() def get_equivalent_kernel_bias(self): k_origin, b_origin = transI_fusebn(self.dbb_origin.conv.weight, self.dbb_origin.bn) if hasattr(self, 'dbb_1x1'): k_1x1, b_1x1 = transI_fusebn(self.dbb_1x1.conv.weight, self.dbb_1x1.bn) k_1x1 = transVI_multiscale(k_1x1, self.kernel_size) else: k_1x1, b_1x1 = 0, 0 if hasattr(self.dbb_1x1_kxk, 'idconv1'): k_1x1_kxk_first = self.dbb_1x1_kxk.idconv1.get_actual_kernel() else: k_1x1_kxk_first = self.dbb_1x1_kxk.conv1.weight k_1x1_kxk_first, b_1x1_kxk_first = transI_fusebn(k_1x1_kxk_first, self.dbb_1x1_kxk.bn1) k_1x1_kxk_second, b_1x1_kxk_second = transI_fusebn(self.dbb_1x1_kxk.conv2.weight, self.dbb_1x1_kxk.bn2) k_1x1_kxk_merged, b_1x1_kxk_merged = transIII_1x1_kxk(k_1x1_kxk_first, b_1x1_kxk_first, k_1x1_kxk_second, b_1x1_kxk_second, groups=self.groups) k_avg = transV_avg(self.out_channels, self.kernel_size, self.groups) k_1x1_avg_second, b_1x1_avg_second = transI_fusebn(k_avg.to(self.dbb_avg.avgbn.weight.device), self.dbb_avg.avgbn) if hasattr(self.dbb_avg, 'conv'): k_1x1_avg_first, b_1x1_avg_first = transI_fusebn(self.dbb_avg.conv.weight, self.dbb_avg.bn) k_1x1_avg_merged, b_1x1_avg_merged = transIII_1x1_kxk(k_1x1_avg_first, b_1x1_avg_first, k_1x1_avg_second, b_1x1_avg_second, groups=self.groups) else: k_1x1_avg_merged, b_1x1_avg_merged = k_1x1_avg_second, b_1x1_avg_second return transII_addbranch((k_origin, k_1x1, k_1x1_kxk_merged, k_1x1_avg_merged), (b_origin, b_1x1, b_1x1_kxk_merged, b_1x1_avg_merged)) def switch_to_deploy(self): if hasattr(self, 'dbb_reparam'): return kernel, bias = self.get_equivalent_kernel_bias() self.dbb_reparam = nn.Conv2d(in_channels=self.dbb_origin.conv.in_channels, out_channels=self.dbb_origin.conv.out_channels, kernel_size=self.dbb_origin.conv.kernel_size, stride=self.dbb_origin.conv.stride, padding=self.dbb_origin.conv.padding, dilation=self.dbb_origin.conv.dilation, groups=self.dbb_origin.conv.groups, bias=True) self.dbb_reparam.weight.data = kernel self.dbb_reparam.bias.data = bias for para in self.parameters(): para.detach_() self.__delattr__('dbb_origin') self.__delattr__('dbb_avg') if hasattr(self, 'dbb_1x1'): self.__delattr__('dbb_1x1') self.__delattr__('dbb_1x1_kxk') def forward(self, inputs): if hasattr(self, 'dbb_reparam'): return self.nonlinear(self.dbb_reparam(inputs)) out = self.dbb_origin(inputs) if hasattr(self, 'dbb_1x1'): out += self.dbb_1x1(inputs) out += self.dbb_avg(inputs) out += self.dbb_1x1_kxk(inputs) return self.nonlinear(out) def init_gamma(self, gamma_value): if hasattr(self, "dbb_origin"): torch.nn.init.constant_(self.dbb_origin.bn.weight, gamma_value) if hasattr(self, "dbb_1x1"): torch.nn.init.constant_(self.dbb_1x1.bn.weight, gamma_value) if hasattr(self, "dbb_avg"): torch.nn.init.constant_(self.dbb_avg.avgbn.weight, gamma_value) if hasattr(self, "dbb_1x1_kxk"): torch.nn.init.constant_(self.dbb_1x1_kxk.bn2.weight, gamma_value) def single_init(self): self.init_gamma(0.0) if hasattr(self, "dbb_origin"): torch.nn.init.constant_(self.dbb_origin.bn.weight, 1.0) class DetectBackend(nn.Module): def __init__(self, weights='yolov6s.pt', device=None, dnn=True): super().__init__() assert isinstance(weights, str) and Path(weights).suffix == '.pt', f'{Path(weights).suffix} format is not supported.' from yolov6.utils.checkpoint import load_checkpoint model = load_checkpoint(weights, map_location=device) stride = int(model.stride.max()) self.__dict__.update(locals()) # assign all variables to self def forward(self, im, val=False): y = self.model(im) if isinstance(y, np.ndarray): y = torch.tensor(y, device=self.device) return y