import sys sys.path.insert(0, './') import decord import numpy as np import torch import os from lavila.data.video_transforms import Permute from lavila.data.datasets import get_frame_ids, video_loader_by_frames from lavila.models.models import VCLM_OPENAI_TIMESFORMER_BASE_GPT2 from lavila.models.tokenizer import MyGPT2Tokenizer from collections import OrderedDict import torch import torchvision.transforms as transforms import torchvision.transforms._transforms_video as transforms_video import gradio as gr def get_frame_ids(start_frame, end_frame, num_segments=32, jitter=True): seg_size = float(end_frame - start_frame - 1) / num_segments seq = [] for i in range(num_segments): start = int(np.round(seg_size * i) + start_frame) end = int(np.round(seg_size * (i + 1)) + start_frame) end = min(end, end_frame) if jitter: frame_id = np.random.randint(low=start, high=(end + 1)) else: frame_id = (start + end) // 2 seq.append(frame_id) return seq def video_loader_by_frames(root, vid, frame_ids): vr = decord.VideoReader(os.path.join(root, vid)) try: frames = vr.get_batch(frame_ids).asnumpy() frames = [torch.tensor(frame, dtype=torch.float32) for frame in frames] except (IndexError, decord.DECORDError) as error: print(error) print("Erroneous video: ", vid) frames = [torch.zeros((240, 320, 3)) for _ in range(len(frame_ids))] return torch.stack(frames, dim=0) def iter_clips(video_path, num_segments=4, stride_size=16): # The video is represented by `num_seg=4` frames vr = decord.VideoReader(video_path) frame_sample_size = num_segments * stride_size max_start_frame = len(vr) - frame_sample_size curr_frame = 0 fps = vr.get_avg_fps() while curr_frame == 0 or curr_frame < max_start_frame: stop_frame = min(curr_frame + frame_sample_size, len(vr)) curr_sec, stop_sec = curr_frame / fps, stop_frame / fps frame_ids = get_frame_ids(curr_frame, stop_frame, num_segments=num_segments, jitter=False) frames = video_loader_by_frames('./', video_path, frame_ids) yield curr_sec, stop_sec, frames curr_frame += frame_sample_size class Pipeline: def __init__(self, path=""): ckpt_path = os.path.join(path, 'vclm_openai_timesformer_base_gpt2_base.pt_ego4d.jobid_319630.ep_0002.md5sum_68a71f.pth') ckpt = torch.load(ckpt_path, map_location='cpu') state_dict = OrderedDict() for k, v in ckpt['state_dict'].items(): state_dict[k.replace('module.', '')] = v self.device = 'cuda' if torch.cuda.is_available() else 'cpu' self.model = VCLM_OPENAI_TIMESFORMER_BASE_GPT2( text_use_cls_token=False, project_embed_dim=256, gated_xattn=True, timesformer_gated_xattn=False, freeze_lm_vclm=False, freeze_visual_vclm=False, freeze_visual_vclm_temporal=False, num_frames=4, drop_path_rate=0. ) self.model.load_state_dict(state_dict, strict=True) self.model.to(self.device) self.model.eval() self.tokenizer = MyGPT2Tokenizer('gpt2', add_bos=True) crop_size = 224 self.val_transform = transforms.Compose([ Permute([3, 0, 1, 2]), transforms.Resize(crop_size), transforms.CenterCrop(crop_size), transforms_video.NormalizeVideo(mean=[108.3272985, 116.7460125, 104.09373615000001], std=[68.5005327, 66.6321579, 70.32316305]) ]) def decode_one(self, generated_ids, tokenizer): # get the index of if tokenizer.eos_token_id == tokenizer.bos_token_id: if tokenizer.eos_token_id in generated_ids[1:].tolist(): eos_id = generated_ids[1:].tolist().index(tokenizer.eos_token_id) + 1 else: eos_id = len(generated_ids.tolist()) - 1 elif tokenizer.eos_token_id in generated_ids.tolist(): eos_id = generated_ids.tolist().index(tokenizer.eos_token_id) else: eos_id = len(generated_ids.tolist()) - 1 generated_text_str = tokenizer.tokenizer.decode(generated_ids[1:eos_id].tolist()) return generated_text_str def __call__(self, video_path, temperature=0.7, top_p=0.95, max_text_length=77, num_return_sequences=10): text = "" MAX_ITERATIONS = 5 with torch.autocast(self.device): for clip_idx, (start, stop, frames) in enumerate(iter_clips(video_path)): text_to_add = f"{'-'*30} Predictions From: {start:2.3f}-{stop:2.3f} seconds {'-'*30}\n" print(text_to_add) text += text_to_add frames = self.val_transform(frames).unsqueeze(0) if self.device == 'cuda': frames = frames.to(self.device).half() with torch.no_grad(): image_features = self.model.encode_image(frames) generated_text_ids, ppls = self.model.generate( image_features, self.tokenizer, target=None, # free-form generation max_text_length=max_text_length, top_k=None, top_p=top_p, # nucleus sampling num_return_sequences=num_return_sequences, # number of candidates: 10 temperature=temperature, early_stopping=True, ) for i in range(num_return_sequences): generated_text_str = self.decode_one(generated_text_ids[i], self.tokenizer) text_to_add = '\t{}: {}\n'.format(i, generated_text_str) print(text_to_add) text += text_to_add if (clip_idx+1) >= MAX_ITERATIONS: return text return text title = "LaViLa" description = """LaViLa (**L**anguage **a**ugmented **Vi**deo **La**nguage Pretraining) is a new approach to learning video representations from Large Language Models (LLMs). We repurpose LLMs to be visually conditioned "Narrators", and use them to automatically generate video-language paired data. We use this data to then learn a video-langauge representation, outperforming prior work by large margins. \nGradio Demo for LaVila. This application classifies video in different timestamps. To use it, simply upload your video, or click one of the examples to load them. Read more at the links below.""" article = "

Github Repo | Paper on arxiv

visitor badge

" interface = gr.Interface( Pipeline(), inputs=[ gr.Video(label='video_path'), gr.Slider(0.0, 1.0, 0.7, label='temperature'), gr.Slider(0.0, 1.0, 0.95, label='top_p'), ], outputs='text', examples=[['eating_spaghetti.mp4', 0.7, 0.95], ['assets/3c0dffd0-e38e-4643-bc48-d513943dc20b_012_014.mp4', 0.7, 0.95]], title=title, description=description, article=article, ).launch(debug=True)