# Copyright (c) Facebook, Inc. and its affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Some parts are taken from https://github.com/Liusifei/UVC """ import os import copy import glob import queue from urllib.request import urlopen import argparse import numpy as np from tqdm import tqdm import cv2 import torch import torch.nn as nn from torch.nn import functional as F from PIL import Image from torchvision import transforms import utils import vision_transformer as vits @torch.no_grad() def eval_video_tracking_davis(args, model, frame_list, video_dir, first_seg, seg_ori, color_palette): """ Evaluate tracking on a video given first frame & segmentation """ video_folder = os.path.join(args.output_dir, video_dir.split('/')[-1]) os.makedirs(video_folder, exist_ok=True) # The queue stores the n preceeding frames que = queue.Queue(args.n_last_frames) # first frame frame1, ori_h, ori_w = read_frame(frame_list[0]) # extract first frame feature frame1_feat = extract_feature(model, frame1).T # dim x h*w # saving first segmentation out_path = os.path.join(video_folder, "00000.png") imwrite_indexed(out_path, seg_ori, color_palette) mask_neighborhood = None for cnt in tqdm(range(1, len(frame_list))): frame_tar = read_frame(frame_list[cnt])[0] # we use the first segmentation and the n previous ones used_frame_feats = [frame1_feat] + [pair[0] for pair in list(que.queue)] used_segs = [first_seg] + [pair[1] for pair in list(que.queue)] frame_tar_avg, feat_tar, mask_neighborhood = label_propagation(args, model, frame_tar, used_frame_feats, used_segs, mask_neighborhood) # pop out oldest frame if neccessary if que.qsize() == args.n_last_frames: que.get() # push current results into queue seg = copy.deepcopy(frame_tar_avg) que.put([feat_tar, seg]) # upsampling & argmax frame_tar_avg = F.interpolate(frame_tar_avg, scale_factor=args.patch_size, mode='bilinear', align_corners=False, recompute_scale_factor=False)[0] frame_tar_avg = norm_mask(frame_tar_avg) _, frame_tar_seg = torch.max(frame_tar_avg, dim=0) # saving to disk frame_tar_seg = np.array(frame_tar_seg.squeeze().cpu(), dtype=np.uint8) frame_tar_seg = np.array(Image.fromarray(frame_tar_seg).resize((ori_w, ori_h), 0)) frame_nm = frame_list[cnt].split('/')[-1].replace(".jpg", ".png") imwrite_indexed(os.path.join(video_folder, frame_nm), frame_tar_seg, color_palette) def restrict_neighborhood(h, w): # We restrict the set of source nodes considered to a spatial neighborhood of the query node (i.e. ``local attention'') mask = torch.zeros(h, w, h, w) for i in range(h): for j in range(w): for p in range(2 * args.size_mask_neighborhood + 1): for q in range(2 * args.size_mask_neighborhood + 1): if i - args.size_mask_neighborhood + p < 0 or i - args.size_mask_neighborhood + p >= h: continue if j - args.size_mask_neighborhood + q < 0 or j - args.size_mask_neighborhood + q >= w: continue mask[i, j, i - args.size_mask_neighborhood + p, j - args.size_mask_neighborhood + q] = 1 mask = mask.reshape(h * w, h * w) return mask.cuda(non_blocking=True) def norm_mask(mask): c, h, w = mask.size() for cnt in range(c): mask_cnt = mask[cnt,:,:] if(mask_cnt.max() > 0): mask_cnt = (mask_cnt - mask_cnt.min()) mask_cnt = mask_cnt/mask_cnt.max() mask[cnt,:,:] = mask_cnt return mask def label_propagation(args, model, frame_tar, list_frame_feats, list_segs, mask_neighborhood=None): """ propagate segs of frames in list_frames to frame_tar """ ## we only need to extract feature of the target frame feat_tar, h, w = extract_feature(model, frame_tar, return_h_w=True) return_feat_tar = feat_tar.T # dim x h*w ncontext = len(list_frame_feats) feat_sources = torch.stack(list_frame_feats) # nmb_context x dim x h*w feat_tar = F.normalize(feat_tar, dim=1, p=2) feat_sources = F.normalize(feat_sources, dim=1, p=2) feat_tar = feat_tar.unsqueeze(0).repeat(ncontext, 1, 1) aff = torch.exp(torch.bmm(feat_tar, feat_sources) / 0.1) # nmb_context x h*w (tar: query) x h*w (source: keys) if args.size_mask_neighborhood > 0: if mask_neighborhood is None: mask_neighborhood = restrict_neighborhood(h, w) mask_neighborhood = mask_neighborhood.unsqueeze(0).repeat(ncontext, 1, 1) aff *= mask_neighborhood aff = aff.transpose(2, 1).reshape(-1, h * w) # nmb_context*h*w (source: keys) x h*w (tar: queries) tk_val, _ = torch.topk(aff, dim=0, k=args.topk) tk_val_min, _ = torch.min(tk_val, dim=0) aff[aff < tk_val_min] = 0 aff = aff / torch.sum(aff, keepdim=True, axis=0) list_segs = [s.cuda() for s in list_segs] segs = torch.cat(list_segs) nmb_context, C, h, w = segs.shape segs = segs.reshape(nmb_context, C, -1).transpose(2, 1).reshape(-1, C).T # C x nmb_context*h*w seg_tar = torch.mm(segs, aff) seg_tar = seg_tar.reshape(1, C, h, w) return seg_tar, return_feat_tar, mask_neighborhood def extract_feature(model, frame, return_h_w=False): """Extract one frame feature everytime.""" out = model.get_intermediate_layers(frame.unsqueeze(0).cuda(), n=1)[0] out = out[:, 1:, :] # we discard the [CLS] token h, w = int(frame.shape[1] / model.patch_embed.patch_size), int(frame.shape[2] / model.patch_embed.patch_size) dim = out.shape[-1] out = out[0].reshape(h, w, dim) out = out.reshape(-1, dim) if return_h_w: return out, h, w return out def imwrite_indexed(filename, array, color_palette): """ Save indexed png for DAVIS.""" if np.atleast_3d(array).shape[2] != 1: raise Exception("Saving indexed PNGs requires 2D array.") im = Image.fromarray(array) im.putpalette(color_palette.ravel()) im.save(filename, format='PNG') def to_one_hot(y_tensor, n_dims=None): """ Take integer y (tensor or variable) with n dims & convert it to 1-hot representation with n+1 dims. """ if(n_dims is None): n_dims = int(y_tensor.max()+ 1) _,h,w = y_tensor.size() y_tensor = y_tensor.type(torch.LongTensor).view(-1, 1) n_dims = n_dims if n_dims is not None else int(torch.max(y_tensor)) + 1 y_one_hot = torch.zeros(y_tensor.size()[0], n_dims).scatter_(1, y_tensor, 1) y_one_hot = y_one_hot.view(h,w,n_dims) return y_one_hot.permute(2, 0, 1).unsqueeze(0) def read_frame_list(video_dir): frame_list = [img for img in glob.glob(os.path.join(video_dir,"*.jpg"))] frame_list = sorted(frame_list) return frame_list def read_frame(frame_dir, scale_size=[480]): """ read a single frame & preprocess """ img = cv2.imread(frame_dir) ori_h, ori_w, _ = img.shape if len(scale_size) == 1: if(ori_h > ori_w): tw = scale_size[0] th = (tw * ori_h) / ori_w th = int((th // 64) * 64) else: th = scale_size[0] tw = (th * ori_w) / ori_h tw = int((tw // 64) * 64) else: th, tw = scale_size img = cv2.resize(img, (tw, th)) img = img.astype(np.float32) img = img / 255.0 img = img[:, :, ::-1] img = np.transpose(img.copy(), (2, 0, 1)) img = torch.from_numpy(img).float() img = color_normalize(img) return img, ori_h, ori_w def read_seg(seg_dir, factor, scale_size=[480]): seg = Image.open(seg_dir) _w, _h = seg.size # note PIL.Image.Image's size is (w, h) if len(scale_size) == 1: if(_w > _h): _th = scale_size[0] _tw = (_th * _w) / _h _tw = int((_tw // 64) * 64) else: _tw = scale_size[0] _th = (_tw * _h) / _w _th = int((_th // 64) * 64) else: _th = scale_size[1] _tw = scale_size[0] small_seg = np.array(seg.resize((_tw // factor, _th // factor), 0)) small_seg = torch.from_numpy(small_seg.copy()).contiguous().float().unsqueeze(0) return to_one_hot(small_seg), np.asarray(seg) def color_normalize(x, mean=[0.485, 0.456, 0.406], std=[0.228, 0.224, 0.225]): for t, m, s in zip(x, mean, std): t.sub_(m) t.div_(s) return x if __name__ == '__main__': parser = argparse.ArgumentParser('Evaluation with video object segmentation on DAVIS 2017') parser.add_argument('--pretrained_weights', default='', type=str, help="Path to pretrained weights to evaluate.") parser.add_argument('--arch', default='vit_small', type=str, choices=['vit_tiny', 'vit_small', 'vit_base'], help='Architecture (support only ViT atm).') parser.add_argument('--patch_size', default=16, type=int, help='Patch resolution of the model.') parser.add_argument("--checkpoint_key", default="teacher", type=str, help='Key to use in the checkpoint (example: "teacher")') parser.add_argument('--output_dir', default=".", help='Path where to save segmentations') parser.add_argument('--data_path', default='/path/to/davis/', type=str) parser.add_argument("--n_last_frames", type=int, default=7, help="number of preceeding frames") parser.add_argument("--size_mask_neighborhood", default=12, type=int, help="We restrict the set of source nodes considered to a spatial neighborhood of the query node") parser.add_argument("--topk", type=int, default=5, help="accumulate label from top k neighbors") parser.add_argument("--bs", type=int, default=6, help="Batch size, try to reduce if OOM") args = parser.parse_args() print("git:\n {}\n".format(utils.get_sha())) print("\n".join("%s: %s" % (k, str(v)) for k, v in sorted(dict(vars(args)).items()))) # building network model = vits.__dict__[args.arch](patch_size=args.patch_size, num_classes=0) print(f"Model {args.arch} {args.patch_size}x{args.patch_size} built.") model.cuda() utils.load_pretrained_weights(model, args.pretrained_weights, args.checkpoint_key, args.arch, args.patch_size) for param in model.parameters(): param.requires_grad = False model.eval() color_palette = [] for line in urlopen("https://raw.githubusercontent.com/Liusifei/UVC/master/libs/data/palette.txt"): color_palette.append([int(i) for i in line.decode("utf-8").split('\n')[0].split(" ")]) color_palette = np.asarray(color_palette, dtype=np.uint8).reshape(-1,3) video_list = open(os.path.join(args.data_path, "ImageSets/2017/val.txt")).readlines() for i, video_name in enumerate(video_list): video_name = video_name.strip() print(f'[{i}/{len(video_list)}] Begin to segmentate video {video_name}.') video_dir = os.path.join(args.data_path, "JPEGImages/480p/", video_name) frame_list = read_frame_list(video_dir) seg_path = frame_list[0].replace("JPEGImages", "Annotations").replace("jpg", "png") first_seg, seg_ori = read_seg(seg_path, args.patch_size) eval_video_tracking_davis(args, model, frame_list, video_dir, first_seg, seg_ori, color_palette)