"""utils.py - Helper functions for building the model and for loading model parameters. These helper functions are built to mirror those in the official TensorFlow implementation. """ # Author: lukemelas (github username) # Github repo: https://github.com/lukemelas/EfficientNet-PyTorch # With adjustments and added comments by workingcoder (github username). import re import math import collections from functools import partial import torch from torch import nn from torch.nn import functional as F from torch.utils import model_zoo ################################################################################ # Help functions for model architecture ################################################################################ # GlobalParams and BlockArgs: Two namedtuples # Swish and MemoryEfficientSwish: Two implementations of the method # round_filters and round_repeats: # Functions to calculate params for scaling model width and depth ! ! ! # get_width_and_height_from_size and calculate_output_image_size # drop_connect: A structural design # get_same_padding_conv2d: # Conv2dDynamicSamePadding # Conv2dStaticSamePadding # get_same_padding_maxPool2d: # MaxPool2dDynamicSamePadding # MaxPool2dStaticSamePadding # It's an additional function, not used in EfficientNet, # but can be used in other model (such as EfficientDet). # Parameters for the entire model (stem, all blocks, and head) GlobalParams = collections.namedtuple('GlobalParams', [ 'width_coefficient', 'depth_coefficient', 'image_size', 'dropout_rate', 'num_classes', 'batch_norm_momentum', 'batch_norm_epsilon', 'drop_connect_rate', 'depth_divisor', 'min_depth', 'include_top']) # Parameters for an individual model block BlockArgs = collections.namedtuple('BlockArgs', [ 'num_repeat', 'kernel_size', 'stride', 'expand_ratio', 'input_filters', 'output_filters', 'se_ratio', 'id_skip']) # Set GlobalParams and BlockArgs's defaults GlobalParams.__new__.__defaults__ = (None,) * len(GlobalParams._fields) BlockArgs.__new__.__defaults__ = (None,) * len(BlockArgs._fields) # Swish activation function if hasattr(nn, 'SiLU'): Swish = nn.SiLU else: # For compatibility with old PyTorch versions class Swish(nn.Module): def forward(self, x): return x * torch.sigmoid(x) # A memory-efficient implementation of Swish function class SwishImplementation(torch.autograd.Function): @staticmethod def forward(ctx, i): result = i * torch.sigmoid(i) ctx.save_for_backward(i) return result @staticmethod def backward(ctx, grad_output): i = ctx.saved_tensors[0] sigmoid_i = torch.sigmoid(i) return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i))) class MemoryEfficientSwish(nn.Module): def forward(self, x): return SwishImplementation.apply(x) def round_filters(filters, global_params): """Calculate and round number of filters based on width multiplier. Use width_coefficient, depth_divisor and min_depth of global_params. Args: filters (int): Filters number to be calculated. global_params (namedtuple): Global params of the model. Returns: new_filters: New filters number after calculating. """ multiplier = global_params.width_coefficient if not multiplier: return filters # TODO: modify the params names. # maybe the names (width_divisor,min_width) # are more suitable than (depth_divisor,min_depth). divisor = global_params.depth_divisor min_depth = global_params.min_depth filters *= multiplier min_depth = min_depth or divisor # pay attention to this line when using min_depth # follow the formula transferred from official TensorFlow implementation new_filters = max(min_depth, int(filters + divisor / 2) // divisor * divisor) if new_filters < 0.9 * filters: # prevent rounding by more than 10% new_filters += divisor return int(new_filters) def round_repeats(repeats, global_params): """Calculate module's repeat number of a block based on depth multiplier. Use depth_coefficient of global_params. Args: repeats (int): num_repeat to be calculated. global_params (namedtuple): Global params of the model. Returns: new repeat: New repeat number after calculating. """ multiplier = global_params.depth_coefficient if not multiplier: return repeats # follow the formula transferred from official TensorFlow implementation return int(math.ceil(multiplier * repeats)) def drop_connect(inputs, p, training): """Drop connect. Args: input (tensor: BCWH): Input of this structure. p (float: 0.0~1.0): Probability of drop connection. training (bool): The running mode. Returns: output: Output after drop connection. """ assert 0 <= p <= 1, 'p must be in range of [0,1]' if not training: return inputs batch_size = inputs.shape[0] keep_prob = 1 - p # generate binary_tensor mask according to probability (p for 0, 1-p for 1) random_tensor = keep_prob random_tensor += torch.rand([batch_size, 1, 1, 1], dtype=inputs.dtype, device=inputs.device) binary_tensor = torch.floor(random_tensor) output = inputs / keep_prob * binary_tensor return output def get_width_and_height_from_size(x): """Obtain height and width from x. Args: x (int, tuple or list): Data size. Returns: size: A tuple or list (H,W). """ if isinstance(x, int): return x, x if isinstance(x, list) or isinstance(x, tuple): return x else: raise TypeError() def calculate_output_image_size(input_image_size, stride): """Calculates the output image size when using Conv2dSamePadding with a stride. Necessary for static padding. Thanks to mannatsingh for pointing this out. Args: input_image_size (int, tuple or list): Size of input image. stride (int, tuple or list): Conv2d operation's stride. Returns: output_image_size: A list [H,W]. """ if input_image_size is None: return None image_height, image_width = get_width_and_height_from_size(input_image_size) stride = stride if isinstance(stride, int) else stride[0] image_height = int(math.ceil(image_height / stride)) image_width = int(math.ceil(image_width / stride)) return [image_height, image_width] # Note: # The following 'SamePadding' functions make output size equal ceil(input size/stride). # Only when stride equals 1, can the output size be the same as input size. # Don't be confused by their function names ! ! ! def get_same_padding_conv2d(image_size=None): """Chooses static padding if you have specified an image size, and dynamic padding otherwise. Static padding is necessary for ONNX exporting of models. Args: image_size (int or tuple): Size of the image. Returns: Conv2dDynamicSamePadding or Conv2dStaticSamePadding. """ if image_size is None: return Conv2dDynamicSamePadding else: return partial(Conv2dStaticSamePadding, image_size=image_size) class Conv2dDynamicSamePadding(nn.Conv2d): """2D Convolutions like TensorFlow, for a dynamic image size. The padding is operated in forward function by calculating dynamically. """ # Tips for 'SAME' mode padding. # Given the following: # i: width or height # s: stride # k: kernel size # d: dilation # p: padding # Output after Conv2d: # o = floor((i+p-((k-1)*d+1))/s+1) # If o equals i, i = floor((i+p-((k-1)*d+1))/s+1), # => p = (i-1)*s+((k-1)*d+1)-i def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, groups=1, bias=True): super().__init__(in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias) self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2 def forward(self, x): ih, iw = x.size()[-2:] kh, kw = self.weight.size()[-2:] sh, sw = self.stride oh, ow = math.ceil(ih / sh), math.ceil(iw / sw) # change the output size according to stride ! ! ! pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0) pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0) if pad_h > 0 or pad_w > 0: x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2]) return F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) class Conv2dStaticSamePadding(nn.Conv2d): """2D Convolutions like TensorFlow's 'SAME' mode, with the given input image size. The padding mudule is calculated in construction function, then used in forward. """ # With the same calculation as Conv2dDynamicSamePadding def __init__(self, in_channels, out_channels, kernel_size, stride=1, image_size=None, **kwargs): super().__init__(in_channels, out_channels, kernel_size, stride, **kwargs) self.stride = self.stride if len(self.stride) == 2 else [self.stride[0]] * 2 # Calculate padding based on image size and save it assert image_size is not None ih, iw = (image_size, image_size) if isinstance(image_size, int) else image_size kh, kw = self.weight.size()[-2:] sh, sw = self.stride oh, ow = math.ceil(ih / sh), math.ceil(iw / sw) pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0) pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0) if pad_h > 0 or pad_w > 0: self.static_padding = nn.ZeroPad2d((pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2)) else: self.static_padding = nn.Identity() def forward(self, x): x = self.static_padding(x) x = F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) return x def get_same_padding_maxPool2d(image_size=None): """Chooses static padding if you have specified an image size, and dynamic padding otherwise. Static padding is necessary for ONNX exporting of models. Args: image_size (int or tuple): Size of the image. Returns: MaxPool2dDynamicSamePadding or MaxPool2dStaticSamePadding. """ if image_size is None: return MaxPool2dDynamicSamePadding else: return partial(MaxPool2dStaticSamePadding, image_size=image_size) class MaxPool2dDynamicSamePadding(nn.MaxPool2d): """2D MaxPooling like TensorFlow's 'SAME' mode, with a dynamic image size. The padding is operated in forward function by calculating dynamically. """ def __init__(self, kernel_size, stride, padding=0, dilation=1, return_indices=False, ceil_mode=False): super().__init__(kernel_size, stride, padding, dilation, return_indices, ceil_mode) self.stride = [self.stride] * 2 if isinstance(self.stride, int) else self.stride self.kernel_size = [self.kernel_size] * 2 if isinstance(self.kernel_size, int) else self.kernel_size self.dilation = [self.dilation] * 2 if isinstance(self.dilation, int) else self.dilation def forward(self, x): ih, iw = x.size()[-2:] kh, kw = self.kernel_size sh, sw = self.stride oh, ow = math.ceil(ih / sh), math.ceil(iw / sw) pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0) pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0) if pad_h > 0 or pad_w > 0: x = F.pad(x, [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2]) return F.max_pool2d(x, self.kernel_size, self.stride, self.padding, self.dilation, self.ceil_mode, self.return_indices) class MaxPool2dStaticSamePadding(nn.MaxPool2d): """2D MaxPooling like TensorFlow's 'SAME' mode, with the given input image size. The padding mudule is calculated in construction function, then used in forward. """ def __init__(self, kernel_size, stride, image_size=None, **kwargs): super().__init__(kernel_size, stride, **kwargs) self.stride = [self.stride] * 2 if isinstance(self.stride, int) else self.stride self.kernel_size = [self.kernel_size] * 2 if isinstance(self.kernel_size, int) else self.kernel_size self.dilation = [self.dilation] * 2 if isinstance(self.dilation, int) else self.dilation # Calculate padding based on image size and save it assert image_size is not None ih, iw = (image_size, image_size) if isinstance(image_size, int) else image_size kh, kw = self.kernel_size sh, sw = self.stride oh, ow = math.ceil(ih / sh), math.ceil(iw / sw) pad_h = max((oh - 1) * self.stride[0] + (kh - 1) * self.dilation[0] + 1 - ih, 0) pad_w = max((ow - 1) * self.stride[1] + (kw - 1) * self.dilation[1] + 1 - iw, 0) if pad_h > 0 or pad_w > 0: self.static_padding = nn.ZeroPad2d((pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2)) else: self.static_padding = nn.Identity() def forward(self, x): x = self.static_padding(x) x = F.max_pool2d(x, self.kernel_size, self.stride, self.padding, self.dilation, self.ceil_mode, self.return_indices) return x ################################################################################ # Helper functions for loading model params ################################################################################ # BlockDecoder: A Class for encoding and decoding BlockArgs # efficientnet_params: A function to query compound coefficient # get_model_params and efficientnet: # Functions to get BlockArgs and GlobalParams for efficientnet # url_map and url_map_advprop: Dicts of url_map for pretrained weights # load_pretrained_weights: A function to load pretrained weights class BlockDecoder(object): """Block Decoder for readability, straight from the official TensorFlow repository. """ @staticmethod def _decode_block_string(block_string): """Get a block through a string notation of arguments. Args: block_string (str): A string notation of arguments. Examples: 'r1_k3_s11_e1_i32_o16_se0.25_noskip'. Returns: BlockArgs: The namedtuple defined at the top of this file. """ assert isinstance(block_string, str) ops = block_string.split('_') options = {} for op in ops: splits = re.split(r'(\d.*)', op) if len(splits) >= 2: key, value = splits[:2] options[key] = value # Check stride assert (('s' in options and len(options['s']) == 1) or (len(options['s']) == 2 and options['s'][0] == options['s'][1])) return BlockArgs( num_repeat=int(options['r']), kernel_size=int(options['k']), stride=[int(options['s'][0])], expand_ratio=int(options['e']), input_filters=int(options['i']), output_filters=int(options['o']), se_ratio=float(options['se']) if 'se' in options else None, id_skip=('noskip' not in block_string)) @staticmethod def _encode_block_string(block): """Encode a block to a string. Args: block (namedtuple): A BlockArgs type argument. Returns: block_string: A String form of BlockArgs. """ args = [ 'r%d' % block.num_repeat, 'k%d' % block.kernel_size, 's%d%d' % (block.strides[0], block.strides[1]), 'e%s' % block.expand_ratio, 'i%d' % block.input_filters, 'o%d' % block.output_filters ] if 0 < block.se_ratio <= 1: args.append('se%s' % block.se_ratio) if block.id_skip is False: args.append('noskip') return '_'.join(args) @staticmethod def decode(string_list): """Decode a list of string notations to specify blocks inside the network. Args: string_list (list[str]): A list of strings, each string is a notation of block. Returns: blocks_args: A list of BlockArgs namedtuples of block args. """ assert isinstance(string_list, list) blocks_args = [] for block_string in string_list: blocks_args.append(BlockDecoder._decode_block_string(block_string)) return blocks_args @staticmethod def encode(blocks_args): """Encode a list of BlockArgs to a list of strings. Args: blocks_args (list[namedtuples]): A list of BlockArgs namedtuples of block args. Returns: block_strings: A list of strings, each string is a notation of block. """ block_strings = [] for block in blocks_args: block_strings.append(BlockDecoder._encode_block_string(block)) return block_strings def efficientnet_params(model_name): """Map EfficientNet model name to parameter coefficients. Args: model_name (str): Model name to be queried. Returns: params_dict[model_name]: A (width,depth,res,dropout) tuple. """ params_dict = { # Coefficients: width,depth,res,dropout 'efficientnet-b0': (1.0, 1.0, 224, 0.2), 'efficientnet-b1': (1.0, 1.1, 240, 0.2), 'efficientnet-b2': (1.1, 1.2, 260, 0.3), 'efficientnet-b3': (1.2, 1.4, 300, 0.3), 'efficientnet-b4': (1.4, 1.8, 380, 0.4), 'efficientnet-b5': (1.6, 2.2, 456, 0.4), 'efficientnet-b6': (1.8, 2.6, 528, 0.5), 'efficientnet-b7': (2.0, 3.1, 600, 0.5), 'efficientnet-b8': (2.2, 3.6, 672, 0.5), 'efficientnet-l2': (4.3, 5.3, 800, 0.5), } return params_dict[model_name] def efficientnet(width_coefficient=None, depth_coefficient=None, image_size=None, dropout_rate=0.2, drop_connect_rate=0.2, num_classes=1000, include_top=True): """Create BlockArgs and GlobalParams for efficientnet model. Args: width_coefficient (float) depth_coefficient (float) image_size (int) dropout_rate (float) drop_connect_rate (float) num_classes (int) Meaning as the name suggests. Returns: blocks_args, global_params. """ # Blocks args for the whole model(efficientnet-b0 by default) # It will be modified in the construction of EfficientNet Class according to model blocks_args = [ 'r1_k3_s11_e1_i32_o16_se0.25', 'r2_k3_s22_e6_i16_o24_se0.25', 'r2_k5_s22_e6_i24_o40_se0.25', 'r3_k3_s22_e6_i40_o80_se0.25', 'r3_k5_s11_e6_i80_o112_se0.25', 'r4_k5_s22_e6_i112_o192_se0.25', 'r1_k3_s11_e6_i192_o320_se0.25', ] blocks_args = BlockDecoder.decode(blocks_args) global_params = GlobalParams( width_coefficient=width_coefficient, depth_coefficient=depth_coefficient, image_size=image_size, dropout_rate=dropout_rate, num_classes=num_classes, batch_norm_momentum=0.99, batch_norm_epsilon=1e-3, drop_connect_rate=drop_connect_rate, depth_divisor=8, min_depth=None, include_top=include_top, ) return blocks_args, global_params def get_model_params(model_name, override_params): """Get the block args and global params for a given model name. Args: model_name (str): Model's name. override_params (dict): A dict to modify global_params. Returns: blocks_args, global_params """ if model_name.startswith('efficientnet'): w, d, s, p = efficientnet_params(model_name) # note: all models have drop connect rate = 0.2 blocks_args, global_params = efficientnet( width_coefficient=w, depth_coefficient=d, dropout_rate=p, image_size=s) else: raise NotImplementedError('model name is not pre-defined: {}'.format(model_name)) if override_params: # ValueError will be raised here if override_params has fields not included in global_params. global_params = global_params._replace(**override_params) return blocks_args, global_params # train with Standard methods # check more details in paper(EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks) url_map = { 'efficientnet-b0': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b0-355c32eb.pth', 'efficientnet-b1': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b1-f1951068.pth', 'efficientnet-b2': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b2-8bb594d6.pth', 'efficientnet-b3': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b3-5fb5a3c3.pth', 'efficientnet-b4': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b4-6ed6700e.pth', 'efficientnet-b5': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b5-b6417697.pth', 'efficientnet-b6': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b6-c76e70fd.pth', 'efficientnet-b7': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/efficientnet-b7-dcc49843.pth', } # train with Adversarial Examples(AdvProp) # check more details in paper(Adversarial Examples Improve Image Recognition) url_map_advprop = { 'efficientnet-b0': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b0-b64d5a18.pth', 'efficientnet-b1': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b1-0f3ce85a.pth', 'efficientnet-b2': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b2-6e9d97e5.pth', 'efficientnet-b3': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b3-cdd7c0f4.pth', 'efficientnet-b4': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b4-44fb3a87.pth', 'efficientnet-b5': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b5-86493f6b.pth', 'efficientnet-b6': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b6-ac80338e.pth', 'efficientnet-b7': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b7-4652b6dd.pth', 'efficientnet-b8': 'https://github.com/lukemelas/EfficientNet-PyTorch/releases/download/1.0/adv-efficientnet-b8-22a8fe65.pth', } # TODO: add the petrained weights url map of 'efficientnet-l2' def load_pretrained_weights(model, model_name, weights_path=None, load_fc=True, advprop=False, verbose=True): """Loads pretrained weights from weights path or download using url. Args: model (Module): The whole model of efficientnet. model_name (str): Model name of efficientnet. weights_path (None or str): str: path to pretrained weights file on the local disk. None: use pretrained weights downloaded from the Internet. load_fc (bool): Whether to load pretrained weights for fc layer at the end of the model. advprop (bool): Whether to load pretrained weights trained with advprop (valid when weights_path is None). """ if isinstance(weights_path, str): state_dict = torch.load(weights_path) else: # AutoAugment or Advprop (different preprocessing) url_map_ = url_map_advprop if advprop else url_map state_dict = model_zoo.load_url(url_map_[model_name]) if load_fc: ret = model.load_state_dict(state_dict, strict=False) assert not ret.missing_keys, 'Missing keys when loading pretrained weights: {}'.format(ret.missing_keys) else: state_dict.pop('_fc.weight') state_dict.pop('_fc.bias') ret = model.load_state_dict(state_dict, strict=False) assert set(ret.missing_keys) == set( ['_fc.weight', '_fc.bias']), 'Missing keys when loading pretrained weights: {}'.format(ret.missing_keys) assert not ret.unexpected_keys, 'Missing keys when loading pretrained weights: {}'.format(ret.unexpected_keys) if verbose: print('Loaded pretrained weights for {}'.format(model_name))