import imageio import numpy as np from PIL import Image, ImageDraw, ImageEnhance from scipy.ndimage import gaussian_filter1d def draw_annotations_for_extended_frames(video_batch, start_index_prediction=17): """ video_batch List of list of PIL.Image frames """ radius = 2.5 offset = 10 for video in video_batch: assert start_index_prediction < len(video), f"Index {start_index_prediction} is out-of-bound for frames" for i_idx, image in enumerate(video): if i_idx < start_index_prediction: continue draw = ImageDraw.Draw(image) draw.ellipse([offset, offset, offset + 2 * radius, offset + 2 * radius], fill=(255, 0, 0)) return video_batch def draw_annotations_for_initial_frames(video_batch, end_index_prediction=17): """ video_batch List of list of PIL.Image frames """ radius = 2.5 offset = 10 for video in video_batch: assert end_index_prediction < len(video), f"Index {end_index_prediction} is out-of-bound for frames" for i_idx, image in enumerate(video): if i_idx >= end_index_prediction: continue draw = ImageDraw.Draw(image) draw.ellipse([offset, offset, offset + 2 * radius, offset + 2 * radius], fill=(255, 0, 0)) return video_batch def images_to_array(images): return np.array([np.array(img) for img in images]) def array_to_images(array): return [Image.fromarray(arr) for arr in array] def save_video_mp4(path, video, fps=12): imageio.mimwrite( path, video, format="mp4", fps=fps, codec="libx264", output_params=["-pix_fmt", "yuv420p"], ) def blend_pixels_temporal(video_batch, start_index_prediction=17, sigma=1, support=3): for video in video_batch: assert start_index_prediction < len(video) and start_index_prediction > 0, f"Index {start_index_prediction} is out-of-bound for frames" # blur temporally video_array = images_to_array(video) start = max(start_index_prediction - support // 2, 0) end = min(start_index_prediction + support // 2 + 1, video_array.shape[0]) # only blend in the first frame video_array[start_index_prediction] = gaussian_filter1d(video_array[start:end], sigma=sigma, axis=0, truncate=support / 2)[support // 2] # uncomment to blend in "support" frames, which causes noticeable blurs in some cases # video_array[start:end] = gaussian_filter1d(video_array[start:end], # sigma=sigma, # axis=0, # truncate=support/2) blurred_video = array_to_images(video_array) for i in range(len(video)): video[i] = blurred_video[i] return video_batch def calculate_mean_std(image_array, channel): channel_data = image_array[:, :, channel] return channel_data.mean(), channel_data.std() def adjust_mean(image, target_mean, channel): channel_data = np.array(image)[:, :, channel] current_mean = channel_data.mean() adjusted_data = channel_data + (target_mean - current_mean) adjusted_data = np.clip(adjusted_data, 0, 255).astype(np.uint8) image_np = np.array(image) image_np[:, :, channel] = adjusted_data return Image.fromarray(image_np) def adjust_contrast(image, target_contrast, channel): channel_data = np.array(image)[:, :, channel] current_mean = channel_data.mean() current_contrast = channel_data.std() if current_contrast == 0: adjusted_data = current_mean * np.ones_like(channel_data) else: adjusted_data = (channel_data - current_mean) * (target_contrast / current_contrast) + current_mean adjusted_data = np.clip(adjusted_data, 0, 255).astype(np.uint8) image_np = np.array(image) image_np[:, :, channel] = adjusted_data return Image.fromarray(image_np) def calculate_brightness(image): grayscale = image.convert("L") histogram = grayscale.histogram() pixels = sum(histogram) brightness = scale = len(histogram) for index in range(scale): ratio = histogram[index] / pixels brightness += ratio * (-scale + index) return 1 if brightness == 255 else brightness / scale def calculate_contrast(image): grayscale = image.convert("L") histogram = grayscale.histogram() pixels = sum(histogram) mean = sum(i * w for i, w in enumerate(histogram)) / pixels contrast = sum((i - mean) ** 2 * w for i, w in enumerate(histogram)) / pixels return contrast**0.5 def adjust_brightness_contrast(image, target_brightness, target_contrast): current_brightness = calculate_brightness(image) brightness_enhancer = ImageEnhance.Brightness(image) image = brightness_enhancer.enhance(target_brightness / current_brightness) current_contrast = calculate_contrast(image) contrast_enhancer = ImageEnhance.Contrast(image) image = contrast_enhancer.enhance(target_contrast / current_contrast) return image def adjust_statistics_to_match_reference(video_batch, start_index_prediction=17, reference_window_size=3): assert start_index_prediction > 1, "Need at least 1 frame before prediction start" assert ( start_index_prediction > reference_window_size ), f"Reference window size incorrect: {start_index_prediction} <= {reference_window_size}" for video in video_batch: window_start = max(start_index_prediction - reference_window_size, 0) # then adjust the overall brightness and contrast window_brightness = np.mean([calculate_brightness(video[jj]) for jj in range(window_start, start_index_prediction)]) window_contrast = np.mean([calculate_contrast(video[jj]) for jj in range(window_start, start_index_prediction)]) for ii in range(start_index_prediction, len(video)): video[ii] = adjust_brightness_contrast(video[ii], window_brightness, window_contrast) return video_batch