# This script is modified from https://github.com/caizhongang/SMPLer-X/blob/main/main/inference.py # Licensed under: """ S-Lab License 1.0 Copyright 2022 S-Lab Redistribution and use for non-commercial purpose in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 4. In the event that redistribution and/or use for commercial purpose in source or binary forms, with or without modification is required, please contact the contributor(s) of the work. """ import os import sys import os.path as osp import numpy as np import torchvision.transforms as transforms import torch.backends.cudnn as cudnn import torch CUR_DIR = osp.dirname(os.path.abspath(__file__)) sys.path.insert(0, osp.join(CUR_DIR, "..", "main")) sys.path.insert(0, osp.join(CUR_DIR, "..", "common")) from config import cfg from mmdet.apis import init_detector, inference_detector from utils.inference_utils import process_mmdet_results class Inferer: def __init__(self, pretrained_model, num_gpus, output_folder): self.output_folder = output_folder self.device = torch.device("cuda") if (num_gpus > 0) else torch.device("cpu") config_path = osp.join(CUR_DIR, "./config", f"config_{pretrained_model}.py") ckpt_path = osp.join(CUR_DIR, "../pretrained_models", f"{pretrained_model}.pth.tar") cfg.get_config_fromfile(config_path) cfg.update_config(num_gpus, ckpt_path, output_folder, self.device) self.cfg = cfg cudnn.benchmark = True # load model from base import Demoer demoer = Demoer() demoer._make_model() demoer.model.eval() self.demoer = demoer checkpoint_file = osp.join(CUR_DIR, "../pretrained_models/mmdet/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth") config_file = osp.join(CUR_DIR, "../pretrained_models/mmdet/mmdet_faster_rcnn_r50_fpn_coco.py") model = init_detector(config_file, checkpoint_file, device=self.device) # or device='cuda:0' self.model = model def infer(self, original_img, iou_thr, frame, multi_person=False, mesh_as_vertices=False): from utils.preprocessing import process_bbox, generate_patch_image mesh_paths = [] smplx_paths = [] # prepare input image transform = transforms.ToTensor() vis_img = original_img.copy() original_img_height, original_img_width = original_img.shape[:2] ## mmdet inference mmdet_results = inference_detector(self.model, original_img) pred_instance = mmdet_results.pred_instances.cpu().numpy() bboxes = np.concatenate((pred_instance.bboxes, pred_instance.scores[:, None]), axis=1) bboxes = bboxes[pred_instance.labels == 0] bboxes = np.expand_dims(bboxes, axis=0) mmdet_box = process_mmdet_results(bboxes, cat_id=0, multi_person=True) # save original image if no bbox if len(mmdet_box[0]) < 1: return original_img, [], [] num_bbox = 1 mmdet_box = mmdet_box[0] ## loop all detected bboxes for bbox_id in range(num_bbox): mmdet_box_xywh = np.zeros((4)) mmdet_box_xywh[0] = mmdet_box[bbox_id][0] mmdet_box_xywh[1] = mmdet_box[bbox_id][1] mmdet_box_xywh[2] = abs(mmdet_box[bbox_id][2] - mmdet_box[bbox_id][0]) mmdet_box_xywh[3] = abs(mmdet_box[bbox_id][3] - mmdet_box[bbox_id][1]) # skip small bboxes by bbox_thr in pixel if mmdet_box_xywh[2] < 50 or mmdet_box_xywh[3] < 150: continue bbox = process_bbox(mmdet_box_xywh, original_img_width, original_img_height) img, img2bb_trans, bb2img_trans = generate_patch_image(original_img, bbox, 1.0, 0.0, False, self.cfg.input_img_shape) img = transform(img.astype(np.float32)) / 255 img = img.to(cfg.device)[None, :, :, :] inputs = {"img": img} targets = {} meta_info = {} # mesh recovery with torch.no_grad(): out = self.demoer.model(inputs, targets, meta_info, "test") ## save single person param smplx_pred = {} smplx_pred["global_orient"] = out["smplx_root_pose"].reshape(-1, 3).cpu().numpy() smplx_pred["body_pose"] = out["smplx_body_pose"].reshape(-1, 3).cpu().numpy() smplx_pred["left_hand_pose"] = out["smplx_lhand_pose"].reshape(-1, 3).cpu().numpy() smplx_pred["right_hand_pose"] = out["smplx_rhand_pose"].reshape(-1, 3).cpu().numpy() smplx_pred["jaw_pose"] = out["smplx_jaw_pose"].reshape(-1, 3).cpu().numpy() smplx_pred["leye_pose"] = np.zeros((1, 3)) smplx_pred["reye_pose"] = np.zeros((1, 3)) smplx_pred["betas"] = out["smplx_shape"].reshape(-1, 10).cpu().numpy() smplx_pred["expression"] = out["smplx_expr"].reshape(-1, 10).cpu().numpy() smplx_pred["transl"] = out["cam_trans"].reshape(-1, 3).cpu().numpy() save_path_smplx = os.path.join(self.output_folder, "smplx") os.makedirs(save_path_smplx, exist_ok=True) npz_path = os.path.join(save_path_smplx, f"{frame:05}_{bbox_id}.npz") np.savez(npz_path, **smplx_pred) smplx_paths.append(npz_path) vis_img = None mesh_paths = None return vis_img, mesh_paths, smplx_paths