from transformers import AutoTokenizer, AutoModelForCausalLM import torch import gradio as gr tokenizer = AutoTokenizer.from_pretrained("natdon/DialoGPT_Michael_Scott") model = AutoModelForCausalLM.from_pretrained("natdon/DialoGPT_Michael_Scott") chat_history_ids = None step = 0 def predict(input, chat_history_ids=chat_history_ids, step=step): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode( input + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat( [chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) step = step + 1 output = tokenizer.decode( chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True) return output demo = gr.Blocks() with demo: gr.Markdown( """