import gradio as gr import pandas as pd import numpy as np import json from io import StringIO from collections import OrderedDict def test(input_json): print("Received input") # Parse the input JSON string try: inputs = json.loads(input_json) except json.JSONDecodeError: inputs = json.loads(input_json.replace("'", '"')) # Accessing input data ids_index = inputs['input']['ids_matrix'] weightsNames = inputs['input']["weights_names"] matrix = inputs['input']["matrix"] weights = inputs['input']["weights"] landuses = inputs['input']["landuse_areas"] attributeMapperDict = inputs['input']["attributeMapperDict"] landuseMapperDict = inputs['input']["landuseMapperDict"] alpha = inputs['input']["alpha"] alpha = float(alpha) threshold = inputs['input']["threshold"] threshold = float(threshold) df_matrix = pd.DataFrame(matrix).T df_weights = pd.DataFrame(weights).T df_landuses = pd.DataFrame(landuses).T df_matrix = df_matrix.round(0).astype(int) df_weights = df_weights.round(0).astype(int) df_landuses = df_landuses.round(0).astype(int) def computeAccessibility (DistanceMatrix,weightsNames, destinationWeights=None,alpha = 0.0038, threshold = 600): decay_factors = np.exp(-alpha * DistanceMatrix) * (DistanceMatrix <= threshold) subdomainsAccessibility = pd.DataFrame(index=DistanceMatrix.index, columns=weightsNames) #destinationWeights.columns) # for weighted accessibility (e. g. areas) if not destinationWeights.empty: for col,columnName in zip(destinationWeights.columns, weightsNames): subdomainsAccessibility[columnName] = (decay_factors * destinationWeights[col].values).sum(axis=1) # for unweighted accessibility (e. g. points of interest) else: for columnName in weightsNames: subdomainsAccessibility[columnName] = (decay_factors * 1).sum(axis=1) return subdomainsAccessibility subdomainsAccessibility = computeAccessibility(df_matrix,weightsNames,df_weights,alpha,threshold) # make a dictionary to output in grasshopper / etc subdomainsAccessibility_dictionary = subdomainsAccessibility.to_dict('index') def remap(value, B_min, B_max, C_min, C_max): return C_min + (((value - B_min) / (B_max - B_min))* (C_max - C_min)) def accessibilityToLivability (DistanceMatrix,subdomainsAccessibility, SubdomainAttributeDict): livability = pd.DataFrame(index=DistanceMatrix.index, columns=subdomainsAccessibility.columns) livability.fillna(0, inplace=True) # find a set of unique domains, to which subdomains are aggregated temp = [] for key, values in SubdomainAttributeDict.items(): domain = SubdomainAttributeDict[key]['domain'] for item in domain: if ',' in item: domain_list = item.split(',') SubdomainAttributeDict[key]['domain'] = domain_list for domain in domain_list: temp.append(domain) else: if item != 0: temp.append(item) domainsUnique = list(set(temp)) for domain in domainsUnique: livability[domain] = 0 # remap accessibility to livability points for key, values in SubdomainAttributeDict.items(): threshold = float(SubdomainAttributeDict[key]['thresholds']) max_livability = float(SubdomainAttributeDict[key]['max_points']) domain = [str(item) for item in SubdomainAttributeDict[key]['domain']] sqm_per_employee = float(SubdomainAttributeDict[key]['sqmPerEmpl']) if key in subdomainsAccessibility.columns: livability_score = remap(subdomainsAccessibility[key], 0, threshold, 0, max_livability) livability.loc[subdomainsAccessibility[key] >= threshold, key] = max_livability livability.loc[subdomainsAccessibility[key] < threshold, key] = livability_score if any(domain): for item in domain: livability.loc[subdomainsAccessibility[key] >= threshold, domain] += max_livability livability.loc[subdomainsAccessibility[key] < threshold, domain] += livability_score else: livability.loc[subdomainsAccessibility[key] < threshold, domain] += 10 return livability livability = accessibilityToLivability(df_matrix,subdomainsAccessibility,attributeMapperDict) livability_dictionary = livability.to_dict('index') # Prepare the output output = { "subdomainsAccessibility_dictionary": subdomainsAccessibility_dictionary, "livability_dictionary": livability_dictionary } return json.dumps(output) # Define the Gradio interface with a single JSON input iface = gr.Interface( fn=test, inputs=gr.Textbox(label="Input JSON", lines=20, placeholder="Enter JSON with all parameters here..."), outputs=gr.JSON(label="Output JSON"), title="testspace" ) iface.launch()