import gradio as gr import pandas as pd import numpy as np import json from io import StringIO from collections import OrderedDict import os # ---------------------- Accessing data from Notion ---------------------- # from notion_client import Client as client_notion from config import landuseDatabaseId , subdomainAttributesDatabaseId from imports_utils import fetch_all_database_pages from imports_utils import get_property_value from imports_utils import notion from config import landuseColumnName from config import subdomainColumnName from config import sqmPerEmployeeColumnName from config import thresholdsColumnName from config import maxPointsColumnName from config import domainColumnName #from imports_utils import fetchDomainMapper #from imports_utils import fetchSubdomainMapper from imports_utils import notionToken from config import useNotionData if notionToken is None: raise Exception("Notion token not found. Please check the environment variables.") else: print("Notion token found successfully!") """ landuse_attributes = fetch_all_database_pages(notion, landuseDatabaseId) livability_attributes = fetch_all_database_pages(notion, subdomainAttributesDatabaseId) landuseMapperDict = fetchDomainMapper (landuse_attributes) livabilityMapperDict = fetchSubdomainMapper (livability_attributes) """ if useNotionData: landuseMapperDict, livabilityMapperDict = getDataFromNotion( notion=notion, notionToken=notionToken, landuseDatabaseID=landuseDatabaseId, subdomainDatabaseID=subdomainAttributesDatabaseId ) # ---------------------- Accessing data from Speckle ---------------------- # from specklepy.api.client import SpeckleClient from specklepy.api.credentials import get_default_account, get_local_accounts from specklepy.transports.server import ServerTransport from specklepy.api import operations from specklepy.objects.geometry import Polyline, Point from specklepy.objects import Base #import imports_utils import speckle_utils import data_utils from config import landuseDatabaseId , streamId, dmBranchName, dmCommitId, luBranchName, luCommitId, distanceMatrixActivityNodes from imports_utils import speckleToken #from imports_utils import fetchDistanceMatrices from config import useSpeckleData from imports_utils import getDataFromSpeckle if speckleToken is None: raise Exception("Speckle token not found") else: print("Speckle token found successfully!") if useSpeckleData == True: CLIENT = SpeckleClient(host="https://speckle.xyz/") account = get_default_account() CLIENT.authenticate_with_token(token=speckleToken) landuses, matrices = getDataFromSpeckle(speckleClient = CLIENT, streamID=streamId,matrixBranchName=dmBranchName, landuseBranchName=luBranchName) #streamDistanceMatrices = speckle_utils.getSpeckleStream(streamId,dmBranchName,CLIENT, dmCommitId) #matrices = fetchDistanceMatrices (streamDistanceMatrices) #streamLanduses = speckle_utils.getSpeckleStream(streamId,luBranchName,CLIENT, luCommitId) #streamData = streamLanduses["@Data"]["@{0}"] #df_speckle_lu = speckle_utils.get_dataframe(streamData, return_original_df=False) #df_lu = df_speckle_lu.copy() #df_lu = df_lu.astype(str) #df_lu = df_lu.set_index("uuid", drop=False) # variable, uuid as default df_dm = matrices[distanceMatrixActivityNodes] df_dm_dict = df_dm.to_dict('index') # Replace infinity with 10000 and NaN values with 0, then convert to integers df_dm = df_dm.replace([np.inf, -np.inf], 10000).fillna(0) df_dm = df_dm.apply(pd.to_numeric, errors='coerce') df_dm = df_dm.round(0).astype(int) mask_connected = df_dm.index.tolist() """ lu_columns = [] # provided by user? or prefix for name in df_lu.columns: if name.startswith("lu+"): lu_columns.append(name) """ df_lu = landuses.loc[mask_connected] #df_lu_filtered.columns = [col.replace('lu+', '') for col in df_lu_filtered.columns] mergeAssetNonAssetLanduse = True if mergeAssetNonAssetLanduse: df_lu.columns = [col.replace('ASSETS+', '') for col in df_lu.columns] df_lu = df_lu.replace([np.inf, -np.inf], 10000).fillna(0) df_lu = df_lu.apply(pd.to_numeric, errors='coerce') df_lu = df_lu.astype(int) df_lu = df_lu.T.groupby(level=0).sum().T def test(input_json): print("Received input") # Parse the input JSON string try: inputs = json.loads(input_json) except json.JSONDecodeError: inputs = json.loads(input_json.replace("'", '"')) # ------------------------- Accessing input data from Grasshopper ------------------------- # useGrasshopperData = inputs['input']["useGrasshopperData"] # fetch grasshoper data or not if useGrasshopperData == "True": # grasshopper input matrix = inputs['input']["matrix"] landuses = inputs['input']["landuse_areas"] # fetch grasshoper data or not dfLanduses = pd.DataFrame(landuses).T dfLanduses = dfLanduses.apply(pd.to_numeric, errors='coerce') dfLanduses = dfLanduses.replace([np.inf, -np.inf], 0).fillna(0) # cleaning function? dfLanduses = dfLanduses.round(0).astype(int) dfMatrix = pd.DataFrame(matrix).T dfMatrix = dfMatrix.apply(pd.to_numeric, errors='coerce') dfMatrix = dfMatrix.replace([np.inf, -np.inf], 10000).fillna(0) dfMatrix = dfMatrix.round(0).astype(int) else: dfLanduses = df_lu.copy() # fetch speckl data or not dfMatrix = df_dm.copy() df_lu_filtered_dict = dfLanduses.to_dict('index') dm_dictionary = dfMatrix.to_dict('index') attributeMapperDict_gh = inputs['input']["attributeMapperDict"] landuseMapperDict_gh = inputs['input']["landuseMapperDict"] # if fetch notion data or not, def from config import alpha as alphaDefault from config import threshold as thresholdDefault if not inputs['input']["alpha"]: alpha = alphaDefault else: alpha = inputs['input']["alpha"] alpha = float(alpha) if not inputs['input']["threshold"]: threshold = thresholdDefault else: threshold = inputs['input']["threshold"] threshold = float(threshold) """ valid_indexes = [idx for idx in mask_connected if idx in dfLanduses.index] # Identify and report missing indexes missing_indexes = set(mask_connected) - set(valid_indexes) if missing_indexes: print(f"Error: The following indexes were not found in the DataFrame: {missing_indexes}, length: {len(missing_indexes)}") # Apply the filtered mask dfLanduses_filtered = dfLanduses.loc[valid_indexes] from imports_utils import findUniqueDomains from imports_utils import findUniqueSubdomains from imports_utils import landusesToSubdomains from imports_utils import FindWorkplacesNumber from imports_utils import computeAccessibility from imports_utils import computeAccessibility_pointOfInterest from imports_utils import remap from imports_utils import accessibilityToLivability domainsUnique = findUniqueDomains(livabilityMapperDict) subdomainsUnique = findUniqueSubdomains(landuseMapperDict) LivabilitySubdomainsWeights = landusesToSubdomains(dfMatrix,df_lu_filtered,landuseMapperDict,subdomainsUnique) WorkplacesNumber = FindWorkplacesNumber(dfMatrix,livabilityMapperDict,LivabilitySubdomainsWeights,subdomainsUnique) # prepare an input weights dataframe for the parameter LivabilitySubdomainsInputs LivabilitySubdomainsInputs =pd.concat([LivabilitySubdomainsWeights, WorkplacesNumber], axis=1) subdomainsAccessibility = computeAccessibility(dfMatrix,LivabilitySubdomainsInputs,alpha,threshold) #artAccessibility = computeAccessibility_pointOfInterest(df_art_matrix,'ART',alpha,threshold) #gmtAccessibility = computeAccessibility_pointOfInterest(df_gmt_matrix,'GMT+HSR',alpha,threshold) #AccessibilityInputs = pd.concat([subdomainsAccessibility, artAccessibility,gmtAccessibility], axis=1) livability = accessibilityToLivability(dfMatrix,subdomainsAccessibility,livabilityMapperDict,domainsUnique) livability_dictionary = livability.to_dict('index') LivabilitySubdomainsInputs_dictionary = LivabilitySubdomainsInputs.to_dict('index') subdomainsAccessibility_dictionary = subdomainsAccessibility.to_dict('index') LivabilitySubdomainsWeights_dictionary = LivabilitySubdomainsWeights.to_dict('index') """ # Prepare the output output = { #"subdomainsAccessibility_dictionary": subdomainsAccessibility_dictionary, #"livability_dictionary": livability_dictionary, #"subdomainsWeights_dictionary": LivabilitySubdomainsInputs_dictionary, #"luDomainMapper": landuseMapperDict, #"attributeMapper": livabilityMapperDict, "mask_connected": mask_connected, "dm_an": df_dm_dict, "landuses":df_lu_filtered_dict, "constants": [alpha, threshold] } return json.dumps(output) # Define the Gradio interface with a single JSON input iface = gr.Interface( fn=test, inputs=gr.Textbox(label="Input JSON", lines=20, placeholder="Enter JSON with all parameters here..."), outputs=gr.JSON(label="Output JSON"), title="testspace" ) iface.launch()