import streamlit as st from surprise import SVD import pandas as pd import pickle # Load data back from the file with open('svd_model.pkl', 'rb') as file: svd_model, merged_data, movies = pickle.load(file) # Title for the app st.title("Movie Recommendations") # User input for user ID user_id = st.number_input("Enter User ID", min_value=1, step=1) # Get rated and unrated movies for the given user rated_user_movies = merged_data[merged_data['userId'] == user_id]['title'].values unrated_movies = movies[~movies['title'].isin(rated_user_movies)]['title'] # Make predictions on unrated movies pred_ratings = [svd_model.predict(user_id, movie_id) for movie_id in unrated_movies] # Sort predictions by estimated rating in descending order sorted_predictions = sorted(pred_ratings, key=lambda x: x.est, reverse=True) # Get top 10 movie recommendations top_recommendations = sorted_predictions[:10] # Display recommendations st.write(f"\nTop 10 movie recommendations for User {user_id}:") for recommendation in top_recommendations: movie_title = movies[movies['title'] == recommendation.iid]['title'].values[0] st.write(f"{movie_title} (Estimated Rating: {recommendation.est})")