import gradio as gr from PIL import Image, ImageDraw import yolov5 import json model = yolov5.load("./best.pt") def yolo(im): results = model(im) # inference df = results.pandas().xyxy[0].to_json(orient="records") res = json.loads(df) draw = ImageDraw.Draw(im) for bb in res: xmin = bb['xmin'] ymin = bb['ymin'] xmax = bb['xmax'] ymax = bb['ymax'] draw.rectangle([xmin, ymin, xmax, ymax], outline="red", width=3) return [ res, im, ] inputs = gr.Image(type='pil', label="Original Image") outputs = [ gr.JSON(label="Output JSON"), gr.Image(type='pil', label="Output Image with Boxes"), ] title = "YOLOv5 Character" description = "YOLOv5 Character Gradio demo for object detection. Upload an image or click an example image to use." article = "

YOLOv5 Character is an object detection model trained on the 日本古典籍くずし字データセット.

" examples = [ ['『源氏物語』(東京大学総合図書館所蔵).jpg'], ['『源氏物語』(京都大学所蔵).jpg'], ['『平家物語』(国文学研究資料館提供).jpg'] ] demo = gr.Interface(yolo, inputs, outputs, title=title, description=description, article=article, examples=examples) demo.css = """ .json-holder { height: 300px; overflow: auto; } """ demo.launch(share=False)