import os # Remove warning "This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN)..." os.environ["TF_CPP_MIN_LOG_LEVEL"] = "1" os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # GPU in the right order __version__ = "1.12.20" # Whisper and Torch import whisper import torch import torch.nn.functional as F # For alignment import numpy as np import dtw # from scipy.signal import medfilt as median_filter from scipy.ndimage import ( median_filter, ) # faster owing to https://github.com/openai/whisper/commit/f0083e7eb20d032390e42f6f6039947fa8669c93 from scipy.signal import find_peaks # Additional import string import csv import sys import gzip, base64 import copy import re # Constant variables from whisper.utils import format_timestamp from whisper.audio import N_FRAMES, HOP_LENGTH, SAMPLE_RATE # 3000, 160, 16000 AUDIO_SAMPLES_PER_TOKEN = HOP_LENGTH * 2 # 320 AUDIO_TIME_PER_TOKEN = AUDIO_SAMPLES_PER_TOKEN / SAMPLE_RATE # 0.02 (sec) SEGMENT_DURATION = N_FRAMES * HOP_LENGTH / SAMPLE_RATE # 30.0 (sec) # Logs import logging logger = logging.getLogger("whisper_timestamped") USE_EFFICIENT_BY_DEFAULT = True TRUST_WHISPER_TIMESTAMP_BY_DEFAULT = True DISFLUENCY_MARK = "[*]" try: whisper_version = whisper.__version__ except NameError: whisper_version = "" WHIPSER_GE_20230306 = whisper_version >= "20230306" WHIPSER_GE_20230308 = whisper_version >= "20230308" def transcribe_timestamped( # Main Whisper options model, audio, language=None, task="transcribe", # Additional options for word alignment remove_punctuation_from_words=False, compute_word_confidence=True, include_punctuation_in_confidence=False, refine_whisper_precision=0.5, min_word_duration=0.02, # Was 0.04 before 1.11 plot_word_alignment=False, word_alignement_most_top_layers=None, # Was 6 before 1.9 remove_empty_words=False, # Reproducibility seed=1234, vad=False, detect_disfluencies=False, trust_whisper_timestamps=TRUST_WHISPER_TIMESTAMP_BY_DEFAULT, naive_approach=False, # Other Whisper options temperature=0.0 if USE_EFFICIENT_BY_DEFAULT else (0.0, 0.2, 0.4, 0.6, 0.8, 1.0), best_of=None, beam_size=None, patience=None, length_penalty=None, compression_ratio_threshold=2.4, logprob_threshold=-1.0, no_speech_threshold=0.6, fp16=None, condition_on_previous_text=True, initial_prompt=None, suppress_tokens="-1", sample_len=None, verbose=False, ): """ Transcribe an audio file using Whisper Parameters ---------- model: Whisper The Whisper model instance. audio: Union[str, np.ndarray, torch.Tensor] The path to the audio file to open, or the audio waveform in 16kHz. language: str The language to use for the transcription. If None, the language is detected automatically. task: str The task to perform: either "transcribe" or "translate". remove_punctuation_from_words: bool If False, words will be glued with the next punctuation mark (if any). If True, there will be no punctuation mark in the `words[:]["text"]` list. It only affects these strings; This has no influence on the computation of the word confidence, whatever the value of `include_punctuation_in_confidence` is. include_punctuation_in_confidence: bool Whether to include proba of punctuation in the computation of the (previous) word confidence. compute_word_confidence: bool Whether to compute word confidence. If True, a finer confidence for each segment will be computed as well. vad: bool Whether to perform voice activity detection (VAD) on the audio file, to remove silent parts before transcribing with Whisper model. This should decrease hallucinations from the Whisper model. detect_disfluencies: bool Whether to detect disfluencies (i.e. hesitations, filler words, repetitions, corrections, etc.) that Whisper model might have omitted in the transcription. This should make the word timestamp prediction more accurate. And probable disfluencies will be marked as special words "[*]". trust_whisper_timestamps: bool Whether to rely on Whisper's timestamps to get approximative first estimate of segment positions (up to refine_whisper_precision). refine_whisper_precision: float How much can we refine Whisper segment positions, in seconds. Must be a multiple of 0.02. min_word_duration: float Minimum duration of a word, in seconds. If a word is shorter than this, timestamps will be adjusted. plot_word_alignment: bool Whether to plot the word alignment for each segment. matplotlib must be installed to use this option. remove_empty_words: bool Whether to remove words with no duration occuring at the end of segments (probable Whisper hallucinations). seed: int Random seed to use for temperature sampling, for the sake of reproducibility. Choose None for unpredictable randomness. naive_approach: bool Force the naive approach that consists in decoding twice the audio file, once to get the transcritpion and once with the decoded tokens to get the alignment. Note that this approach is used anyway when beam_size is not None and/or when the temperature is a list with more than one element. temperature: float Temperature for sampling. compression_ratio_threshold: float If the gzip compression ratio is above this value, treat as failed. logprob_threshold: float If the average log probability over sampled tokens is below this value, treat as failed. no_speech_threshold: float If the no_speech probability is higher than this value AND the average log probability over sampled tokens is below `logprob_threshold`, consider the segment as silent. condition_on_previous_text: bool if True, the previous output of the model is provided as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop, such as repetition looping or timestamps going out of sync. initial_prompt: str Optional text to provide as a prompt for the first window. suppress_tokens: str Comma-separated list of token ids to suppress during sampling; '-1' will suppress most special characters except common punctuations. verbose: bool Whether to display the text being decoded to the console. If True, displays all the details, If False, displays minimal details. If None, does not display anything Returns ------- A dictionary containing the resulting text ("text") and segment-level details ("segments"), and the spoken language ("language"), which is detected when `decode_options["language"]` is None. """ if seed is not None: torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) # Check input options assert ( refine_whisper_precision >= 0 and refine_whisper_precision / AUDIO_TIME_PER_TOKEN == round(refine_whisper_precision / AUDIO_TIME_PER_TOKEN) ), f"refine_whisper_precision must be a positive multiple of {AUDIO_TIME_PER_TOKEN}" refine_whisper_precision_nframes = round( refine_whisper_precision / AUDIO_TIME_PER_TOKEN ) assert min_word_duration >= 0, f"min_word_duration must be a positive number" assert ( word_alignement_most_top_layers is None or word_alignement_most_top_layers > 0 ), f"word_alignement_most_top_layers must be a strictly positive number" if isinstance(temperature, (list, tuple)) and len(temperature) == 1: temperature = temperature[0] if isinstance(temperature, (list, tuple)): # temperature fallback naive_approach = True elif temperature > 0 and best_of is not None and best_of > 1: naive_approach = True if beam_size is not None: # beam-search naive_approach = True # Input options if fp16 is None: fp16 = model.device != torch.device("cpu") # Safety check input_stride = N_FRAMES // model.dims.n_audio_ctx time_precision = input_stride * HOP_LENGTH / SAMPLE_RATE assert time_precision == AUDIO_TIME_PER_TOKEN alignment_options = dict( remove_punctuation_from_words=remove_punctuation_from_words, compute_word_confidence=compute_word_confidence, include_punctuation_in_confidence=include_punctuation_in_confidence, detect_disfluencies=detect_disfluencies, refine_whisper_precision_nframes=refine_whisper_precision_nframes, plot_word_alignment=plot_word_alignment, word_alignement_most_top_layers=word_alignement_most_top_layers, alignment_heads=get_alignment_heads(model) if word_alignement_most_top_layers is None else None, ) whisper_options = dict( language=language, task=task, fp16=fp16, temperature=temperature, best_of=best_of, beam_size=beam_size, patience=patience, length_penalty=length_penalty, condition_on_previous_text=condition_on_previous_text, initial_prompt=initial_prompt, suppress_tokens=suppress_tokens, sample_len=sample_len, verbose=verbose if (not vad or verbose is not True) else False, ) other_options = dict( no_speech_threshold=no_speech_threshold, logprob_threshold=logprob_threshold, compression_ratio_threshold=compression_ratio_threshold, ) if vad: audio = get_audio_tensor(audio) audio, convert_timestamps = remove_non_speech(audio, plot=plot_word_alignment) global num_alignment_for_plot num_alignment_for_plot = 0 if naive_approach: (transcription, words) = _transcribe_timestamped_naive( model, audio, min_word_duration=0.0, # Was 0.04 before 1.11 trust_whisper_timestamps=trust_whisper_timestamps, **alignment_options, **whisper_options, **other_options, ) else: (transcription, words) = _transcribe_timestamped_efficient( model, audio, trust_whisper_timestamps=trust_whisper_timestamps, **alignment_options, **whisper_options, **other_options, ) if remove_empty_words: # Remove words with empty duration happening at the end of segments, to remove some hallucinations transcription, words = remove_last_null_duration_words( transcription, words, recompute_text=True ) # Refine word positions ensure_increasing_positions( words, min_duration=min_word_duration if trust_whisper_timestamps else 0 ) # Combine words and segments whisper_segments = transcription["segments"] for word in words: if verbose and not naive_approach and not vad: print_timestamped(word) word.pop("tokens") word.pop("tokens_indices") if "avg_logprob_reliable" in word: word.pop("avg_logprob_reliable") idx_segment = word.pop("idx_segment") assert idx_segment < len( whisper_segments ), f"Fatal error: Got unexpected segment index {idx_segment} >= {len(whisper_segments)}" segment = whisper_segments[idx_segment] if "words" in segment: segment["words"].append(word) else: segment["words"] = [word] if refine_whisper_precision: segment["start"] = word["start"] if refine_whisper_precision: segment["end"] = word["end"] if vad: # Recompute timestamps to match the original audio for segment in whisper_segments: for word in segment.get("words", []): word["start"], word["end"] = convert_timestamps( word["start"], word["end"] ) if verbose: print_timestamped(word) if refine_whisper_precision and len(segment.get("words", [])): segment["start"] = segment["words"][0]["start"] segment["end"] = segment["words"][-1]["end"] else: segment["start"], segment["end"] = convert_timestamps( segment["start"], segment["end"] ) return transcription def _transcribe_timestamped_efficient( model, audio, remove_punctuation_from_words, compute_word_confidence, include_punctuation_in_confidence, refine_whisper_precision_nframes, alignment_heads, plot_word_alignment, word_alignement_most_top_layers, detect_disfluencies, trust_whisper_timestamps, use_timestamps_for_alignment=True, # Whisper specific options **whisper_options, ): # Get options sample_len = whisper_options["sample_len"] temperature = whisper_options["temperature"] no_speech_threshold = whisper_options["no_speech_threshold"] logprob_threshold = whisper_options["logprob_threshold"] verbose = whisper_options["verbose"] # Note: "on-the-fly" verbose is not implementable in the current state (we don't know the absolute position of the current chunk). See issue #18 verbose_bugged = False whisper_options["verbose"] = ( None if whisper_options["verbose"] is True else whisper_options["verbose"] ) # We will print intermediate results ourselves logit_filters = get_logit_filters(model, whisper_options) language = whisper_options["language"] tokenizer = whisper.tokenizer.get_tokenizer( model.is_multilingual, task=whisper_options["task"], language=language ) max_sample_len = sample_len or model.dims.n_text_ctx // 2 n_ctx = model.dims.n_text_ctx debug = logger.getEffectiveLevel() >= logging.DEBUG word_alignement_most_top_layers = ( float("inf") if word_alignement_most_top_layers is None else word_alignement_most_top_layers ) # The main outcome timestamped_word_segments = ( [] ) # list of timestamped word segments that have been collected so far # Main variables to be accumulated segment_tokens = [ [] ] # list of lists of token indices that have been collected so far (one list per segment) segment_attweights = [ [] for _ in range(min(word_alignement_most_top_layers, len(model.decoder.blocks))) ] # attention weights on the last segments segment_avglogprobs = ( [] ) # average log probability for each segment (actually of the corresponding chunk, as computed by whisper) segment_logprobs = [] # token log probabilities for each segment # Variables related to options that can skip some segments sot_index = None # index of the SOT token in the current set of processed tokens no_speech_prob = None # no speech probability for the current 30 sec chunk chunk_logprobs = [] # log probabilities for the current 30 sec chunk chunk_tokens = [] # tokens for the current 30 sec chunk (list of Torch tensors) chunk_tokens_nosot = ( [] ) # tokens for the current 30 sec chunk, without the SOT tokens (list of indices) last_chunk_token = ( None # last token of the current chunk, that may be needed for corner cases ) last_token_fallback = ( None # last token to use as a fallback if the model gets stuck ) has_started = False # whether we have started decoding mfcc = None # MFCC features for the current 30 sec chunk new_mfcc = None # num_inference_steps = ( 0 # number of inference steps performed so far (for debugging only) ) def is_sot(curr_tokens): return ( curr_tokens is None or len(curr_tokens) > 1 or curr_tokens[0] == tokenizer.sot ) def has_reached_decoding_limit(): n = len(chunk_tokens_nosot) + 1 m = n + (len(chunk_tokens[0]) if len(chunk_tokens) > 0 else 0) return n + 1 >= max_sample_len or m > n_ctx def reset(add_segment, keep_last_token=True): """Reset the list of tokens for the current speech segment, and corresponding cross-attention weights""" nonlocal segment_tokens, segment_attweights if add_segment: if keep_last_token: segment_tokens.append([segment_tokens[-1][-1]]) segment_attweights = [w[-1:] for w in segment_attweights] else: segment_tokens.append([]) segment_attweights = [[] for w in segment_attweights] segment_tokens[-2].pop(0) elif len(segment_tokens[-1]) > 0: if debug: logger.debug( f"Reset last segment: {tokenizer.decode_with_timestamps(segment_tokens[-1])}" ) segment_tokens[-1] = [] segment_attweights = [[] for w in segment_attweights] saw_consecutive_timestamps = False def must_flush_segment(curr_tokens): """Return whether or not the previously collected tokens must be used to add a new speech segment""" nonlocal segment_tokens, saw_consecutive_timestamps, chunk_tokens_nosot if not is_sot(curr_tokens): is_timestamp = curr_tokens[0] >= tokenizer.timestamp_begin is_previous_timestamp = ( segment_tokens[-1][-1] >= tokenizer.timestamp_begin if len(segment_tokens[-1]) > 0 else False ) consecutive_timestamps = is_timestamp and is_previous_timestamp if consecutive_timestamps: saw_consecutive_timestamps = True return consecutive_timestamps else: # Several tokens as a prompt or must flush last segments must_flush = len(segment_tokens[-1]) > 1 and not saw_consecutive_timestamps if ( not must_flush and WHIPSER_GE_20230306 ): # If the last token is a timestamp, the last segment is used if last_chunk_token is None: must_flush = ( len(segment_tokens[-1]) > 2 and segment_tokens[-1][-1] >= tokenizer.timestamp_begin ) else: must_flush = last_chunk_token >= tokenizer.timestamp_begin if not must_flush and trust_whisper_timestamps: # Discard the end of the last transcription reset(False) saw_consecutive_timestamps = False return must_flush index_begin_30sec_chunck = 0 def get_index_begin_30sec_chunck(curr_tokens): nonlocal index_begin_30sec_chunck, has_started if is_sot(curr_tokens) and has_started: if trust_whisper_timestamps: res = index_begin_30sec_chunck index_begin_30sec_chunck = len(segment_tokens) - 1 else: res = len(segment_tokens) - 1 return res def align_last_segment(curr_tokens=None): nonlocal segment_tokens, segment_attweights, timestamped_word_segments, has_started, no_speech_prob, chunk_tokens, chunk_tokens_nosot, chunk_logprobs, mfcc, new_mfcc, logit_filters, index_begin_30sec_chunck, last_token_fallback, num_inference_steps if debug and trust_whisper_timestamps: logger.debug( f"Add segment {len(timestamped_word_segments)+1} at step {num_inference_steps}:\n\t{tokenizer.decode_with_timestamps(segment_tokens[-1])}" ) tokens = segment_tokens[-1][1:] # When the decoding hit the max limit (number of tokens) -- usually when the language model gets stuck -- # then we have to recover the last token from what is send to the decoder unfinished_decoding = has_reached_decoding_limit() last_is_not_timestamp = len(tokens) and tokens[-1] < tokenizer.timestamp_begin last_token_reliable = True if unfinished_decoding: logger.debug( f"WARNING: decoding hit the max limit for segment {segment_tokens[-1]} (It usually happens when the language model gets stuck)" ) # The last token chosen is in the prompt for the new chunk if curr_tokens is not None and curr_tokens[0] == tokenizer.sot_prev: index_sot = (curr_tokens == tokenizer.sot).nonzero(as_tuple=True) assert len(index_sot) == 1 index_sot = index_sot[0].item() assert index_sot > 0 last_token_fallback = curr_tokens[index_sot - 1].item() logger.debug( f" Guessed last token from the prompt for the new chunk: {last_token_fallback}" ) # Fallback for the last segment, or without prompt: Assume greedy decoding else: last_token_fallback = ( torch.argmax(chunk_logprobs[-1]).item() if last_chunk_token is None else last_chunk_token ) last_token_reliable = temperature == 0 logger.debug( f" Guess last token using probas (assuming greedy decoding): {last_token_fallback}" ) if debug: logger.debug( f"WARNING: also add last token: {tokenizer.decode_with_timestamps([last_token_fallback])}" ) tokens.append(last_token_fallback) segment_tokens[-1].append(last_token_fallback) attention_weights = [torch.cat(w, dim=-2) for w in segment_attweights] last_logprobs = chunk_logprobs[-1] elif ( last_is_not_timestamp ): # was emitted early, without a timestamp before logger.debug(f"WARNING: end timestamp not produced. Adding <|endoftext|>") tokens.append(tokenizer.eot) segment_tokens[-1].append(tokenizer.eot) attention_weights = [torch.cat(w, dim=-2) for w in segment_attweights] last_logprobs = chunk_logprobs[-1] else: attention_weights = [torch.cat(w[:-1], dim=-2) for w in segment_attweights] last_logprobs = chunk_logprobs[-2] # Check prediction of last token end_token = tokens[-1] if end_token >= tokenizer.timestamp_begin: start_token = tokens[0] assert start_token >= tokenizer.timestamp_begin # If Whisper prediction of the end is obviously wrong, we predict it again (constrained) if end_token <= start_token: new_end_token = ( last_logprobs[start_token + 1 :].argmax() + start_token + 1 ) tokens[-1] = new_end_token.item() if debug: logger.debug( f"Re-estimated end token {tokenizer.decode_with_timestamps([new_end_token])} (was {tokenizer.decode_with_timestamps([end_token])}) to be after start token {tokenizer.decode_with_timestamps([start_token])}" ) if len(tokens) <= 1: # Corner case: nothing in between timestamps ws = [] else: ws = perform_word_alignment( tokens, attention_weights, tokenizer, use_space=should_use_space(language), alignment_heads=alignment_heads, remove_punctuation_from_words=remove_punctuation_from_words, refine_whisper_precision_nframes=refine_whisper_precision_nframes, detect_disfluencies=detect_disfluencies, unfinished_decoding=unfinished_decoding, mfcc=mfcc, plot=plot_word_alignment, debug=debug, ) add_segment = len(ws) > 0 if add_segment: timestamped_word_segments.append(ws) else: logger.debug(f"Not added!") reset(add_segment, not is_sot(curr_tokens)) return add_segment, unfinished_decoding, last_token_reliable def may_flush_segment(curr_tokens=None): """Add a speech segment with the new tokens if necessary. May also remove the last collected segments if filtered out by Whisper (no_speech_prob <= no_speech_threshold) """ nonlocal segment_tokens, segment_attweights, timestamped_word_segments, segment_logprobs, has_started, no_speech_prob, chunk_tokens, chunk_tokens_nosot, chunk_logprobs, mfcc, new_mfcc, logit_filters, index_begin_30sec_chunck, last_token_fallback, num_inference_steps, last_chunk_token # Check if a new segment should be added unfinished_decoding = False last_token_reliable = True if must_flush_segment(curr_tokens) and trust_whisper_timestamps: _, unfinished_decoding, last_token_reliable = align_last_segment( curr_tokens ) i_start = get_index_begin_30sec_chunck(curr_tokens) # All segments from previous 30sec chunck have been collected if i_start is not None: if not trust_whisper_timestamps: tokens = torch.Tensor(segment_tokens[-1]).int() idx_task = torch.where(tokens == tokenizer.sot_sequence[-1])[0][ 0 ].item() # index of <|transcribe|> is_special = tokens.ge(tokenizer.eot) # Remove prompt is_special[:idx_task] = True # Keep begin timestamp is_special[idx_task : idx_task + 2] = False is_timestamp = tokens.ge(tokenizer.timestamp_begin) consecutive = torch.where(is_timestamp[1:] & is_timestamp[:-1])[0] if (WHIPSER_GE_20230306 or has_reached_decoding_limit()) and ( (is_timestamp[-1] and not is_timestamp[-2]) if last_chunk_token is None else last_chunk_token >= tokenizer.timestamp_begin and not is_timestamp[-2] ): consecutive = torch.cat( [consecutive, torch.Tensor([len(tokens) - 1]).int()] ) last_is_timestamp = True if len(consecutive): # Remove last tokens is_special[consecutive[-1] + 1 :] = True # Keep end timestamp is_special[consecutive[-1]] = False elif is_timestamp[-1]: # Keep end timestamp is_special[-1] = False else: last_is_timestamp = False if use_timestamps_for_alignment and len(consecutive): # Keep all timestamps is_special[idx_task + 2 : consecutive[-1]] = False # Do remove what has to be removed is_next_achar = ~torch.cat( [is_special[1:], torch.Tensor([False]).bool()] ) for i, weights in enumerate(segment_attweights): assert len(weights) == len( tokens ), f"{len(weights)} attention weights != {len(tokens)}" # We must remove attention weights used to predict timestamp tokens segment_attweights[i] = [ w for s, w in zip(is_next_achar, weights) if s ] tokens_filtered = tokens[~is_special] assert len(segment_attweights[0]) == len( tokens_filtered ), f"{len(segment_attweights[0])} attention weights != {len(tokens_filtered)} " # Replace first and last timestamp orig_start, orig_end = ( tokens_filtered[1].item(), tokens_filtered[-1].item(), ) tokens_filtered[1] = tokenizer.timestamp_begin # <|0.00|> if last_is_timestamp: tokens_filtered[-1] = ( tokenizer.timestamp_begin + N_FRAMES // 2 ) # <|30.00|> segment_tokens[-1] = tokens_filtered.tolist() # Do alignement added, unfinished_decoding, last_token_reliable = align_last_segment() # Re-split into segments (if necessary) if added: if len(consecutive) > 1: segments_timestamped_concat = timestamped_word_segments[-1] new_segments_timestamped = [] new_segment_tokens = [] start = idx_task + 1 i_word = 0 for i, end in enumerate(consecutive): end = end.item() new_segment_tokens.append(tokens[start : end + 1].tolist()) if debug: logger.debug( f"Add segment {len(timestamped_word_segments)+i}:\n\t{tokenizer.decode_with_timestamps(new_segment_tokens[-1])}" ) total_length = end - start - 1 start = end + 1 length = 0 new_segments_timestamped.append([]) while length < total_length: if not use_timestamps_for_alignment and i_word == len( segments_timestamped_concat ): # This can happen in the case of "..." assert ( total_length == 1 and i == len(consecutive) - 1 ), "Unexpected situation!" break assert i_word < len( segments_timestamped_concat ), f"i_word={i_word} < len(segments_timestamped_concat)={len(segments_timestamped_concat)}" word = segments_timestamped_concat[i_word] new_segments_timestamped[-1].append(word) length += len(word["tokens_indices"]) i_word += 1 # This can be non zero, when a punctuation (alone in a segment) is glued to the previous segment if use_timestamps_for_alignment: assert ( length == total_length ), f"length={length} != total_length={total_length}" elif length > total_length: delta = length - total_length word = new_segments_timestamped[-1][-1] word_tokindices = word["tokens_indices"] word_tokens = word["tokens"] word["tokens_indices"] = word_tokindices[:-delta] word["tokens"] = word_tokens[:-delta] word["word"] = "".join(word_tokens[:-delta]) i_word -= 1 t = segments_timestamped_concat[i_word]["end"] segments_timestamped_concat[i_word] = dict( text="".join(word_tokens[-delta:]), start=t, end=t, # Word without timestamp tokens=word_tokens[-delta:], tokens_indices=word_tokindices[-delta:], ) assert i_word == len(segments_timestamped_concat) segment_tokens = ( segment_tokens[:-2] + new_segment_tokens + [segment_tokens[-1]] ) timestamped_word_segments = ( timestamped_word_segments[:-1] + new_segments_timestamped ) else: # Recover start and end token segment = segment_tokens[-2] tokenizer.decode_with_timestamps([orig_start, orig_end]) segment[0] = orig_start if last_is_timestamp: segment[-1] = orig_end if debug: logger.debug( f"Add segment {len(timestamped_word_segments)}:\n\t{tokenizer.decode_with_timestamps(segment)}" ) if unfinished_decoding: timestamped_word_segments[-1][-1][ "avg_logprob_reliable" ] = last_token_reliable reset(False) mfcc = new_mfcc n_segments = len(segment_tokens) - 1 # Get word confidence and/or check if previous segments shoud have been skipped should_skip = False if compute_word_confidence or no_speech_threshold is not None: # no voice activity check should_skip = ( (no_speech_prob > no_speech_threshold) if (no_speech_threshold is not None) else False ) if compute_word_confidence or ( should_skip and logprob_threshold is not None ): n = len(chunk_logprobs) if n == len(chunk_tokens_nosot): chunk_tokens_nosot = chunk_tokens_nosot[1:] if unfinished_decoding: assert last_token_fallback is not None last_tokens = [last_token_fallback] timestamped_word_segments[-1][-1][ "avg_logprob_reliable" ] = last_token_reliable n += 1 elif has_reached_decoding_limit(): # there were segments in the 30sec chunck, and then the LM got stuck last_tokens = [torch.argmax(chunk_logprobs[-1]).item()] timestamped_word_segments[-1][-1]["avg_logprob_reliable"] = ( temperature == 0 ) else: last_tokens = [tokenizer.eot] chunck_indices = chunk_tokens_nosot + last_tokens assert len(chunk_logprobs) == len( chunck_indices ), f"{len(chunk_logprobs)} != {len(chunck_indices)}" logprobs = torch.cat( [ logprob[i].unsqueeze(0) for (logprob, i) in zip(chunk_logprobs, chunck_indices) ] ) assert min( [p.isfinite().item() for p in logprobs] ), f"Got infinite logprob among ({len(logprobs)}) {[(i, tokenizer.decode_with_timestamps([i]), v.item()) for (i,v) in zip(chunck_indices, logprobs)]}" sum_logprob = sum(logprobs) avg_logprob = sum_logprob / n # don't skip if the logprob is high enough, whatever the no_speech_prob is if ( logprob_threshold is not None and avg_logprob > logprob_threshold ): should_skip = False if should_skip: logger.debug( f"Skipping last {n_segments-i_start} segments (no_speech_prob {no_speech_prob} > {no_speech_threshold} and avg_logprob {avg_logprob} < {logprob_threshold})" ) index_begin_30sec_chunck -= n_segments - i_start segment_tokens = segment_tokens[:i_start] + [segment_tokens[-1]] timestamped_word_segments = timestamped_word_segments[:i_start] elif compute_word_confidence: avg_logprob = avg_logprob.item() i_token_end = -1 for i in range(i_start, n_segments): tokens = segment_tokens[i] i_token_start = i_token_end + 1 i_token_end = i_token_start + len(tokens) assert ( chunck_indices[i_token_start:i_token_end] == tokens ), f"Inconsistent token list {tokenizer.decode_with_timestamps(chunck_indices[i_token_start:i_token_end])} != {tokenizer.decode_with_timestamps(tokens)}" i_token_start += 1 # skip sos (start time) if not unfinished_decoding or i != n_segments - 1: i_token_end -= 1 # skip eos (end time) segment_logprobs.append(logprobs[i_token_start:i_token_end]) segment_avglogprobs.append(avg_logprob) else: for i in range(i_start, n_segments): segment_logprobs.append(None) segment_avglogprobs.append(None) else: for i in range(i_start, n_segments): segment_logprobs.append(None) segment_avglogprobs.append(None) if verbose_bugged and not should_skip: for segment in timestamped_word_segments[i_start:]: for word in segment: print_timestamped(word) # Reset counters chunk_tokens = [] chunk_tokens_nosot = [] chunk_logprobs = [] no_speech_prob = None def hook_attention_weights(layer, ins, outs, index): nonlocal segment_attweights # In old version of whisper, output is a single tensor assert ( isinstance(outs, tuple) and len(outs) == 2 ), "whisper seems to be outdated, please update it (pip install --upgrade --no-deps --force-reinstall git+https://github.com/openai/whisper.git)" if not has_started: return w = outs[-1] # Only the last attention weights is useful if w.shape[-2] > 1: w = w[:, :, -1:, :] segment_attweights[index].append(w.cpu()) def hook_mfcc(layer, ins, outs): nonlocal new_mfcc, mfcc new_mfcc = ins[0] if mfcc is None: mfcc = new_mfcc def hook_input_tokens(layer, ins, outs): nonlocal segment_tokens, sot_index, chunk_tokens, chunk_tokens_nosot, logit_filters, has_started, language, num_inference_steps num_inference_steps += 1 curr_tokens = ins[0] assert curr_tokens.shape[0] == 1, "Batch decoding is not supported" curr_tokens = curr_tokens.squeeze(0) if is_sot(curr_tokens): chunk_prompt = curr_tokens.tolist() if language is None: if len(curr_tokens) > 1: language = tokenizer.decode(curr_tokens[-2:-1]) language = language[2:-2] # remove trailing "<|" and "|>" whisper_options["language"] = language if ( verbose and not whisper_options["verbose"] and len(curr_tokens) > 1 ): # Reproduce whisper verbose (2/2) print( f"Detected language: {whisper.tokenizer.LANGUAGES[language].title()}" ) sys.stdout.flush() logit_filters = get_logit_filters( model, whisper_options, prompt=chunk_prompt[1 : -len(tokenizer.sot_sequence)], ) may_flush_segment(curr_tokens) # Get the index of the <|startoftranscript|> tokens (to get proba of silence later) if is_sot(curr_tokens): has_started = len(curr_tokens) > 1 or not model.is_multilingual if no_speech_threshold is not None: sot_index = curr_tokens.tolist().index(tokenizer.sot) else: sot_index = None # Keep the last token only if has_started: segment_tokens[-1].append(curr_tokens[-1].item()) # Accumulate tokens if has_started: chunk_tokens.append(curr_tokens) if not is_sot(curr_tokens): chunk_tokens_nosot.append(curr_tokens[-1].item()) else: if verbose and not whisper_options["verbose"]: # Reproduce whisper verbose (1/2) print( "Detecting language using up to the first 30 seconds. Use `--language` to specify the language" ) embedding_weights = None def hook_output_logits(layer, ins, outs): nonlocal no_speech_prob, chunk_logprobs, segment_tokens, chunk_tokens, chunk_tokens_nosot, last_chunk_token, embedding_weights, has_started if embedding_weights is None: embedding_weights = torch.transpose( model.decoder.token_embedding.weight, 0, 1 ).to(outs[0].dtype) # Get the probability of silence if sot_index is not None: logits = (outs[0][sot_index, :] @ embedding_weights).float() logits = logits.softmax(dim=-1) no_speech_prob = logits[tokenizer.no_speech].item() # Get the log-probabilities of tokens (we don't know yet which one will be chosen) if has_started: logits = (outs[0][-1:, :] @ embedding_weights).float() tokens = torch.cat(chunk_tokens).unsqueeze(0) for logit_filter in logit_filters: logit_filter.apply(logits, tokens) logits = F.log_softmax(logits.squeeze(0), dim=-1) chunk_logprobs.append(logits) if WHIPSER_GE_20230306 and has_reached_decoding_limit(): last_chunk_token = torch.argmax(logits).item() else: last_chunk_token = None try: # Add hooks to the model, to get tokens and attention weights on the fly all_hooks = [] all_hooks.append(model.encoder.conv1.register_forward_hook(hook_mfcc)) all_hooks.append( model.decoder.token_embedding.register_forward_hook(hook_input_tokens) ) nblocks = len(model.decoder.blocks) j = 0 for i, block in enumerate(model.decoder.blocks): if i < nblocks - word_alignement_most_top_layers: continue all_hooks.append( block.cross_attn.register_forward_hook( lambda layer, ins, outs, index=j: hook_attention_weights( layer, ins, outs, index ) ) ) j += 1 if compute_word_confidence or no_speech_threshold is not None: all_hooks.append(model.decoder.ln.register_forward_hook(hook_output_logits)) transcription = model.transcribe(audio, **whisper_options) finally: # Remove hooks for hook in all_hooks: hook.remove() # Finalize (collect last segment) may_flush_segment() segment_tokens.pop(-1) token_special_idx = min(tokenizer.sot, tokenizer.eot) def filter_tokens(tokens): while len(tokens) and tokens[0] >= token_special_idx: tokens = tokens[1:] while len(tokens) and tokens[-1] >= token_special_idx: tokens = tokens[:-1] return tokens assert len(segment_tokens) == len( timestamped_word_segments ), f"Inconsistent number of segments: tokens ({len(segment_tokens)}) != timestamped_word_segments ({len(timestamped_word_segments)})" assert len(segment_avglogprobs) == len( segment_tokens ), f"Inconsistent number of segments: avg logprobs ({len(segment_avglogprobs)}) != tokens ({len(segment_tokens)})" assert len(segment_logprobs) == len( segment_tokens ), f"Inconsistent number of segments: logprobs ({len(segment_logprobs)}) != tokens ({len(segment_tokens)})" whisper_segments = transcription["segments"] l1 = len(whisper_segments) l2 = len(timestamped_word_segments) if l1 != l2 and l1 != 0: logger.warning( f"Inconsistent number of segments: whisper_segments ({l1}) != timestamped_word_segments ({l2})" ) assert ( l1 == l2 or l1 == 0 ), f"Inconsistent number of segments: whisper_segments ({l1}) != timestamped_word_segments ({l2})" logger.debug("Compile results") words = [] for i, (segment, timestamped_words, token, avglogprob, logprobs) in enumerate( zip( whisper_segments, timestamped_word_segments, segment_tokens, segment_avglogprobs, segment_logprobs, ) ): timestamped_tokens = filter_tokens(token) whisper_tokens = filter_tokens(segment["tokens"]) if timestamped_tokens != whisper_tokens: if len(timestamped_tokens) == len(whisper_tokens) + 1: logger.warning(f"An additional token was added on segment {i}") elif WHIPSER_GE_20230306 and len(whisper_tokens) == 0: logger.warning(f"Whisper has empty segment {i}") assert ( segment["end"] == segment["start"] ), f"Fatal Error: Got empty segment {i} with non-zero duration" segment["tokens"] = timestamped_tokens segment["text"] = tokenizer.decode(timestamped_tokens) else: assert ( len(timestamped_tokens) < len(whisper_tokens) and timestamped_tokens == whisper_tokens[: len(timestamped_tokens)] ), f"Fatal Error: Got inconsistent text for segment {i}:\n({len(timestamped_tokens)})\n{tokenizer.decode_with_timestamps(timestamped_tokens)}\n{timestamped_tokens}\n!=\n({len(whisper_tokens)})\n{tokenizer.decode_with_timestamps(whisper_tokens)}\n{whisper_tokens[:len(timestamped_tokens)]}" segment["tokens"] = ( token if WHIPSER_GE_20230306 else timestamped_tokens ) # tokens include special timestamp tokens since 20230306 segment["text"] = tokenizer.decode(segment["tokens"]) logger.warning( f"Text had to be shortned on segment {i}:\n{tokenizer.decode(timestamped_tokens)}\n!=\n{tokenizer.decode(whisper_tokens)}" ) timestamped_words[-1]["avg_logprob_reliable"] = False offset = segment["seek"] * HOP_LENGTH / SAMPLE_RATE for timestamped_word in timestamped_words: timestamped_word["start"] += offset timestamped_word["end"] += offset timestamped_word["idx_segment"] = i if compute_word_confidence: if ( "avg_logprob_reliable" not in timestamped_words[-1] or timestamped_words[-1]["avg_logprob_reliable"] ): # assert abs(segment["avg_logprob"] - avglogprob) < 1e-2, f"Fatal Error: Got inconsistent logprob for segment {i}: {segment['avg_logprob']} != {avglogprob}" if abs(segment["avg_logprob"] - avglogprob) >= 1e-2: logger.warning( f"Recomputed different logprob for segment {i}: {avglogprob} != {segment['avg_logprob']}" ) if include_punctuation_in_confidence: segment["confidence"] = round_confidence(logprobs.mean().exp().item()) else: logprobs_nopunc = [] i_end = 0 for timestamped_word in timestamped_words: i_start = i_end tokens = timestamped_word["tokens"] i_end += len(tokens) assert i_end <= len( logprobs ), f"Fatal Error: Got out-of-bound index for segment {i}: {i_end} > {len(logprobs)}" if include_punctuation_in_confidence: word_logprobs = logprobs[i_start:i_end] else: while ( len(tokens) > 1 and len(tokens[-1]) and tokens[-1][-1] in _punctuation ): # Note: look at the last character of token, to take into account "...", "!!", etc. tokens = tokens[:-1] word_logprobs = logprobs[i_start : i_start + len(tokens)] logprobs_nopunc.append(word_logprobs) timestamped_word["confidence"] = round_confidence( word_logprobs.mean().exp().item() if len(word_logprobs) else 0.0 ) if i_end not in [len(logprobs), len(logprobs) - 1]: logger.warning( f"Got inconsistent length for segment {i} ({len(logprobs)} != {i_end}). Some words have been ignored." ) if not include_punctuation_in_confidence: logprobs_nopunc = torch.cat(logprobs_nopunc) segment["confidence"] = round_confidence( logprobs_nopunc.mean().exp().item() ) words.extend(timestamped_words) return transcription, words def _transcribe_timestamped_naive( model, audio, remove_punctuation_from_words, compute_word_confidence, include_punctuation_in_confidence, refine_whisper_precision_nframes, alignment_heads, plot_word_alignment, word_alignement_most_top_layers, detect_disfluencies, trust_whisper_timestamps, min_word_duration, **whisper_options, ): verbose = whisper_options["verbose"] whisper_options["verbose"] = ( None if whisper_options["verbose"] is True else whisper_options["verbose"] ) # We will print intermediate results ourselves language = whisper_options["language"] refine_whisper_precision_sec = ( refine_whisper_precision_nframes * AUDIO_TIME_PER_TOKEN ) word_alignement_most_top_layers = ( float("inf") if word_alignement_most_top_layers is None else word_alignement_most_top_layers ) audio = get_audio_tensor(audio) audio_duration = audio.shape[-1] / SAMPLE_RATE if verbose and language is None and not whisper_options["verbose"]: # Reproduce whisper verbose (1/2) print( "Detecting language using up to the first 30 seconds. Use `--language` to specify the language" ) transcription = model.transcribe(audio, **whisper_options) if verbose and language is None and not whisper_options["verbose"]: # Reproduce whisper verbose (2/2) print( f"Detected language: {whisper.tokenizer.LANGUAGES[transcription['language']].title()}" ) sys.stdout.flush() language = norm_language(transcription["language"]) tokenizer = whisper.tokenizer.get_tokenizer( model.is_multilingual, task=whisper_options["task"], language=language ) use_space = should_use_space(language) attention_weights = [ [] for _ in range(min(word_alignement_most_top_layers, len(model.decoder.blocks))) ] try: all_hooks = [] # Hook the model nblocks = len(model.decoder.blocks) j = 0 for i, block in enumerate(model.decoder.blocks): if i < nblocks - word_alignement_most_top_layers: continue all_hooks.append( block.cross_attn.register_forward_hook( lambda layer, ins, outs, index=j: attention_weights.__setitem__( index, outs[-1] ) ) ) j += 1 # When not relying on Whisper timestamps current_tokens = [] token_to_idx_segment = [] words = [] previous_end = 0 whisper_segments = transcription["segments"] for i_segment, segment in enumerate(whisper_segments): # Note: this could also be a fix to issue #61 where a "<|te|>" token was predicted # segment["tokens"] = [t for t in segment["tokens"] if t < tokenizer.eot or t >= tokenizer.timestamp_begin] start = end = tokens = None if trust_whisper_timestamps: start = segment["start"] end = segment["end"] if end < start: # Whisper is wrong on the prediction of segment end end = min(audio_duration, start + SEGMENT_DURATION) start_margin_min = start - refine_whisper_precision_sec start_margin_max = start + refine_whisper_precision_sec if start >= audio_duration - min_word_duration or ( previous_end >= start_margin_min and previous_end <= start_margin_max ): # Make start as accurate as possible (as the decoding will start with timestamp <|0|>) start = previous_end else: # Fallback start = start_margin_min if start > audio_duration - min_word_duration: # Skip last segment if too short logger.warning( f"Skipping segment outside of audio duration {audio_duration} (original: {segment['start']}-{segment['end']}, new: {start}-XXX)" ) continue end_margin_min = end - refine_whisper_precision_sec end_margin_max = end + refine_whisper_precision_sec if i_segment < len(whisper_segments) - 1: # Try to enforce: # end + min_word_duration <= next start + refine_whisper_precision_sec end_margin_max2 = ( whisper_segments[i_segment + 1]["start"] + refine_whisper_precision_sec - min_word_duration ) if end_margin_max2 >= end_margin_min: end_margin_max = min(end_margin_max2, end_margin_max) end = min(audio_duration, end_margin_max) if end < start + min_word_duration: logger.warning( f"Got super short segment (original from whisper: {segment['start']}-{segment['end']}, new: {start, end})" ) end = min(audio_duration, start + min_word_duration) if end <= start: logger.warning( f"Skipping this short segment occuring too close to the end of the audio" ) continue tokens = segment["tokens"] else: seek = segment["seek"] new_tokens = segment["tokens"] if not len(new_tokens): continue # Add timestamps that will be needed after if new_tokens[0] < tokenizer.timestamp_begin: relative_start = segment["start"] - ( seek * HOP_LENGTH / SAMPLE_RATE ) start_token = ( round(relative_start * SAMPLE_RATE / AUDIO_SAMPLES_PER_TOKEN) + tokenizer.timestamp_begin ) new_tokens = [start_token] + new_tokens if new_tokens[-1] < tokenizer.timestamp_begin: relative_end = segment["end"] - (seek * HOP_LENGTH / SAMPLE_RATE) end_token = ( round(relative_end * SAMPLE_RATE / AUDIO_SAMPLES_PER_TOKEN) + tokenizer.timestamp_begin ) new_tokens = new_tokens + [end_token] current_tokens.extend(new_tokens) token_to_idx_segment.extend([i_segment] * len(new_tokens)) next_seek = ( whisper_segments[i_segment + 1]["seek"] if i_segment < len(whisper_segments) - 1 else None ) if seek != next_seek: start = float(seek * HOP_LENGTH / SAMPLE_RATE) assert ( start < audio_duration ), f"Got start {start} which is outside of audio duration {audio_duration}" end = min(start + SEGMENT_DURATION, audio_duration) tokens = current_tokens if tokens is None or not len(tokens): continue start_sample = min(round(start * SAMPLE_RATE), audio.shape[-1]) end_sample = min(round(end * SAMPLE_RATE), audio.shape[-1]) # Extract features on the audio segment sub_audio = audio_minimum_padding(audio[start_sample:end_sample]) mfcc = whisper.log_mel_spectrogram(sub_audio).to(model.device) mfcc = whisper.pad_or_trim(mfcc, N_FRAMES) mfcc = mfcc.unsqueeze(0) segment_tokens_check = [] if tokens[0] >= tokenizer.timestamp_begin: segment_tokens_check.append(tokens[0]) while tokens[0] >= tokenizer.timestamp_begin: tokens = tokens[1:] assert len(tokens), "Got transcription with only timestamps!" last_token_check = None while tokens[-1] >= tokenizer.timestamp_begin: last_token_check = tokens[-1] tokens = tokens[:-1] tokens = [ *tokenizer.sot_sequence, tokenizer.timestamp_begin, ] + tokens i_start = len(tokenizer.sot_sequence) with torch.no_grad(): logprobs = model( mfcc, torch.Tensor(tokens).int().to(model.device).unsqueeze(0) ) logprobs = F.log_softmax(logprobs, dim=-1) end_token = tokenizer.timestamp_begin + round( min(N_FRAMES * HOP_LENGTH, end_sample - start_sample) // AUDIO_SAMPLES_PER_TOKEN ) tokens = tokens[i_start:] + [end_token] attention_weights = [w[:, :, i_start - 1 :, :] for w in attention_weights] ws = perform_word_alignment( tokens, attention_weights, tokenizer, use_space=use_space, alignment_heads=alignment_heads, remove_punctuation_from_words=remove_punctuation_from_words, refine_whisper_precision_nframes=refine_whisper_precision_nframes, detect_disfluencies=detect_disfluencies, mfcc=mfcc, plot=plot_word_alignment, ) segment_logprobs = [] i_token = 1 for word in ws: word["start"] = round(word["start"] + start, 2) word["end"] = round(word["end"] + start, 2) if trust_whisper_timestamps: word.update({"idx_segment": i_segment}) else: assert i_token < len(tokens) assert ( not len(word["tokens_indices"]) or word["tokens_indices"][0] == tokens[i_token] ) word.update({"idx_segment": token_to_idx_segment[i_token]}) i_token += len(word["tokens"]) while ( i_token < len(tokens) and tokens[i_token] >= tokenizer.timestamp_begin ): i_token += 1 tok_indices = word["tokens_indices"] segment_tokens_check.extend(tok_indices) if compute_word_confidence: tok = word["tokens"] i_end = i_start + len(tok) if include_punctuation_in_confidence: while ( len(tok) > 1 and len(tok[-1]) and tok[-1][-1] in _punctuation ): # Note: look at the last character of token, to take into account "...", "!!", etc. tok = tok[:-1] tok_indices = tok_indices[:-1] word_logprobs = [ logprobs[:, step, tok] for (step, tok) in zip( range(i_start, i_start + len(tok_indices)), tok_indices ) ] i_start = i_end if len(word_logprobs): word_logprobs = torch.cat(word_logprobs) segment_logprobs.append(word_logprobs) word_confidence = word_logprobs.mean().exp().item() else: word_confidence = 0 word.update({"confidence": round_confidence(word_confidence)}) words.append(word) if verbose: print_timestamped(word) if last_token_check is not None: segment_tokens_check.append(last_token_check) if trust_whisper_timestamps: if segment_tokens_check != segment["tokens"]: assert ( len(segment_tokens_check) < len(segment["tokens"]) and segment_tokens_check[:-1] == segment["tokens"][: len(segment_tokens_check) - 1] ), f"Got inconsistent tokens: {tokenizer.decode(segment_tokens_check)} != {tokenizer.decode(segment['tokens'])}" segment["tokens"] = segment_tokens_check segment["text"] = tokenizer.decode(segment["tokens"]) # else: TODO if len(segment_logprobs): segment.update( { "confidence": round_confidence( torch.cat(segment_logprobs).mean().exp().item() ) } ) if len(ws): previous_end = ws[-1]["end"] if not trust_whisper_timestamps: current_tokens = [] token_to_idx_segment = [] finally: # Remove hooks for hook in all_hooks: hook.remove() return (transcription, words) def get_audio_tensor(audio, device="cpu"): if isinstance(audio, str): audio = whisper.load_audio(audio) if isinstance(audio, np.ndarray): audio = torch.Tensor(audio) else: assert isinstance( audio, torch.Tensor ), f"Got unexpected audio of type {type(audio)}" return audio.to(device) def audio_minimum_padding(audio): if audio.shape[-1] <= 200: return whisper.pad_or_trim(audio, 201) return audio def should_use_space(language): return norm_language(language) not in ["zh", "ja", "th", "lo", "my"] def norm_language(language): if language is None: return "en" return whisper.tokenizer.TO_LANGUAGE_CODE.get(language.lower(), language) def print_timestamped(w): line = f"[{format_timestamp(w['start'])} --> {format_timestamp(w['end'])}] {w['text']}\n" # compared to just `print(line)`, this replaces any character not representable using # the system default encoding with an '?', avoiding UnicodeEncodeError. sys.stdout.buffer.write(line.encode(sys.getdefaultencoding(), errors="replace")) sys.stdout.flush() def get_logit_filters(model, whisper_options, prompt=None): decoding_options = get_decoding_options(whisper_options) if "initial_prompt" in decoding_options: prompt0 = decoding_options.pop("initial_prompt") if prompt is None: prompt = prompt0 if prompt is not None: decoding_options["prompt"] = prompt decoding_options = whisper.DecodingOptions( without_timestamps=False, max_initial_timestamp=1.0, prefix=None, suppress_blank=True, **decoding_options, ) # This performs some checks on the options decoding_task = whisper.decoding.DecodingTask(model, decoding_options) return decoding_task.logit_filters def get_decoding_options(whisper_options): return dict( [ (k, v) for (k, v) in whisper_options.items() if k not in [ "no_speech_threshold", "logprob_threshold", "compression_ratio_threshold", "condition_on_previous_text", "verbose", ] ] ) def perform_word_alignment( tokens, attention_weights, tokenizer, use_space=True, mfcc=None, refine_whisper_precision_nframes=0, remove_punctuation_from_words=False, include_punctuation_in_timing=False, # Was True before 1.9 unfinished_decoding=False, alignment_heads=None, medfilt_width=9, qk_scale=1.0, detect_disfluencies=True, subwords_can_be_empty=True, # Was False before 1.11 plot=False, debug=False, ): """ Perform word alignment on the given tokens and attention weights. Returns a list of (word, start_time, end_time) tuples. tokens: list of tokens (integers) attention_weights: list of attention weights (torch tensors) tokenizer: tokenizer used to tokenize the text use_space: whether to use spaces to split the tokens into words (should be true for all languages except Japanese, Chinese, ...) mfcc: MFCC features (used to identify padded region, and for plotting) refine_whisper_precision_nframes: precision time remove_punctuation_from_words: whether to remove punctuation from words include_punctuation_in_timing: whether to include punctuation in the timing of (previous) words unfinished_decoding: whether the decoding is unfinished (e.g. because the model is stuck) alignment_heads: list of attention heads to use for alignment medfilt_width: width of the median filter used to smooth the attention weights qk_scale: scale factor applied to the attention weights plot: whether to plot the word alignment debug: whether to print debug information """ assert ( len(tokens) > 1 ), f"Got unexpected sequence of tokens of length {len(tokens)} {tokenizer.decode_with_timestamps(tokens)}" start_token = tokens[0] - tokenizer.timestamp_begin end_token = tokens[-1] - tokenizer.timestamp_begin # Check start / end tokens if start_token < 0: raise RuntimeError( f"Missing start token in: {tokenizer.decode_with_timestamps(tokens)}" ) if len(tokens) == 1 or end_token < 0: # This can happens when Whisper is stucked as a Language Model if debug: logger.debug( f"Missing end token in {tokenizer.decode_with_timestamps(tokens)}" ) end_token = N_FRAMES // 2 if end_token == start_token and refine_whisper_precision_nframes == 0: if debug: logger.debug( f"Got empty segment in {tokenizer.decode_with_timestamps(tokens)}" ) return [] # Let a minimal duration given the number of tokens (see https://github.com/linto-ai/whisper-timestamped/issues/67) end_token = min(N_FRAMES // 2, max(end_token, start_token + len(tokens))) # Put some margin around the segment if refine_whisper_precision_nframes > 0: start_token = max(start_token - refine_whisper_precision_nframes, 0) end_token = min(end_token + refine_whisper_precision_nframes, N_FRAMES // 2) if end_token <= start_token: raise RuntimeError( f"Got segment with null or negative duration {tokenizer.decode_with_timestamps(tokens)}: {start_token} {end_token}" ) start_time = start_token * AUDIO_TIME_PER_TOKEN # end_time = end_token * AUDIO_TIME_PER_TOKEN split_tokens = split_tokens_on_spaces if use_space else split_tokens_on_unicode words, word_tokens, word_tokens_indices = split_tokens( tokens, tokenizer, remove_punctuation_from_words=remove_punctuation_from_words ) # If the last token is a punctuation that comes after a word # group this final punctuation with the final timestamp # This is to avoid assigning the final punctuation to a big silence or a noise/music background coming after num_punctuations_per_tokens = [ 0 if len(w) == 1 or w[-1] not in _punctuation else 1 for w in word_tokens ] if include_punctuation_in_timing: num_punctuations_per_tokens[:-2] = [0] * (len(num_punctuations_per_tokens) - 2) for i, w in enumerate(attention_weights): assert w.shape[-2] == len( tokens ), f"Attention weights have wrong shape: {w.shape[-2]} (expected {len(tokens)})." weights = torch.cat(attention_weights) # layers * heads * tokens * frames num_tokens = weights.shape[-2] num_frames = end_token - start_token if num_tokens > num_frames: logger.warning( f"Too much text ({num_tokens} tokens) for the given number of frames ({num_frames}) in: {tokenizer.decode_with_timestamps(tokens)}\nThe end of the text will be removed." ) return perform_word_alignment( tokens[: num_frames - 1] + [tokens[-1]], [ torch.cat([w[:, :, : num_frames - 1, :], w[:, :, -1:, :]], dim=-2) for w in attention_weights ], tokenizer, use_space=use_space, refine_whisper_precision_nframes=refine_whisper_precision_nframes, medfilt_width=medfilt_width, qk_scale=qk_scale, alignment_heads=alignment_heads, mfcc=mfcc, plot=plot, remove_punctuation_from_words=remove_punctuation_from_words, detect_disfluencies=detect_disfluencies, subwords_can_be_empty=subwords_can_be_empty, unfinished_decoding=True, debug=debug, ) assert end_token <= weights.shape[-1] assert len(tokens) == num_tokens weights = weights[ ..., start_token:end_token ].cpu() # layers * heads * tokens * frames if alignment_heads is None: weights = weights.reshape(-1, *weights.shape[-2:]) # N * tokens * frames else: weights = torch.stack([weights[l][h] for l, h in alignment_heads.indices().T]) weights = median_filter(weights, (1, 1, medfilt_width)) weights = torch.tensor(weights * qk_scale).softmax(dim=-1) weights = weights.mean( axis=(0) ) # average over layers and heads # tokens * frames weights = weights / weights.norm( dim=-2, keepdim=True ) # This was before the mean before 1.9 weights = -weights.double().numpy() worse_weight = 0 # Get the limit of audio duration max_duration = None if mfcc is not None: max_duration = find_start_padding(mfcc) if max_duration is not None: max_duration = max_duration // 2 # Enforce the max duration if max_duration: if start_token >= max_duration: logger.warning(f"Got start time outside of audio boundary") else: weights[:-1, max_duration:] = worse_weight # Encourage to start early weights[0, 0] = weights.min() # weights[0, refine_whisper_precision_nframes*2:] = worse_weight if subwords_can_be_empty: step_pattern = dtw.stepPattern.symmetric1 else: # Similar as "symmetric1" but without the possibility to have the same timestamp for two tokens step_pattern = dtw.stepPattern.StepPattern( dtw.stepPattern._c( 1, 1, 1, -1, 1, 0, 0, 1, 2, 0, 1, -1, 2, 0, 0, 1, ) ) alignment = dtw.dtw(weights, step_pattern=step_pattern) global num_alignment_for_plot num_alignment_for_plot += 1 if plot: import matplotlib.pyplot as plt import matplotlib.ticker as ticker plot_mfcc = 1 if mfcc is not None else 0 plot_disfluencies = 1 if detect_disfluencies else 0 nplots = 1 + plot_mfcc + plot_disfluencies plt.subplots( nplots, 1, figsize=(16, 9), gridspec_kw={"height_ratios": [3] + [1] * (nplots - 1)}, ) plt.subplot(nplots, 1, 1, frameon=False) plt.imshow(-weights, aspect="auto") plt.plot(alignment.index2s, alignment.index1s, color="red") xticks = np.arange(0, weights.shape[1], 1 / AUDIO_TIME_PER_TOKEN) xticklabels = [ round_timestamp(x) for x in xticks * AUDIO_TIME_PER_TOKEN + start_time ] ylims = plt.gca().get_ylim() ax = plt.gca() ax.tick_params("both", length=0, width=0, which="minor", pad=6) ax.yaxis.set_ticks_position("left") ax.yaxis.set_label_position("left") ax.invert_yaxis() ax.set_ylim(ylims) major_ticks = [-0.5] minor_ticks = [] current_y = 0 for word, word_token in zip(words, word_tokens): minor_ticks.append(current_y + len(word_token) / 2 - 0.5) current_y += len(word_token) major_ticks.append(current_y - 0.5) words_with_subwords = [ "|".join(s).strip() for (w, s) in zip(words, word_tokens) ] ax.yaxis.set_minor_locator(ticker.FixedLocator(minor_ticks)) ax.yaxis.set_minor_formatter(ticker.FixedFormatter(words_with_subwords)) ax.set_yticks(major_ticks) ax.yaxis.set_major_formatter(ticker.NullFormatter()) for y in major_ticks: plt.axhline(y, color="black", linestyle="dashed") plt.ylabel("Words") if plot_mfcc: plt.xticks(xticks) plt.setp(plt.gca().get_xticklabels(), visible=False) xticks *= 2 plt.subplot(nplots, 1, 2, frameon=False) plt.imshow( mfcc[0, :, start_token * 2 : end_token * 2].cpu(), aspect="auto", origin="lower", ) plt.yticks([]) plt.ylabel("MFCC") plt.xticks(xticks, xticklabels) plt.xlabel("Time (s)") jumps = np.diff(alignment.index1s) jumps = np.pad(jumps, (1, 0), constant_values=1) jumps = jumps.astype(bool) jumps = alignment.index2s[jumps] jumps = np.pad(jumps, (0, 1), constant_values=alignment.index2s[-1]) jumps_start = jumps disfluences = {} if detect_disfluencies: jumps_start = copy.copy(jumps) for i_token, (tok, begin, end) in enumerate(zip(tokens, jumps[:-1], jumps[1:])): # Find local maxima in the portion of attention weights attention_weights = -weights[i_token, begin:end] peaks, properties = find_peaks( attention_weights, width=3, prominence=0.02, ) # If more than if len(peaks) > 1: if "left_ips" in properties: left = [round(x) for x in properties["left_ips"]] else: left = properties["left_bases"] new_begin = left[-1] + begin jumps_start[i_token] = new_begin if new_begin != begin: is_punctuation = ( tokenizer.decode_with_timestamps([tok]) in _punctuation ) if not is_punctuation: disfluences[i_token] = (begin, jumps_start[i_token]) else: disfluences[i_token + 1] = (begin, end) if plot: plt.subplot(nplots, 1, 2 + plot_mfcc, frameon=False) plt.plot(range(begin, end), attention_weights) plt.xlim(0, end) for i, p in enumerate(peaks): color = ( "red" if (len(peaks) > 1 and i < len(peaks) - 1) else "green" ) plt.vlines(begin + p, 0, 1, color=color, linestyle="--") if "left_bases" in properties: def barxxy(start, end, y, **kwargs): middle = (start + end) / 2 plt.bar(middle, y, width=end - start, **kwargs) color = "red" if len(peaks) > 1 else "green" barxxy( begin + properties["left_bases"], begin + properties["right_bases"], properties.get( "prominences", [1] * len(properties["left_bases"]) ), alpha=0.5, # put a line with a custom color linewidth=1, edgecolor=color, ) if "left_ips" in properties: for left in properties["left_ips"]: plt.vlines(begin + left, 0, 0.5, color="green", linestyle=":") for right in properties["right_ips"]: plt.vlines(begin + right, 0, 0.5, color="red", linestyle=":") # display the word-level timestamps in a table word_boundaries = np.cumsum([len(t) for t in word_tokens]) word_boundaries = np.pad(word_boundaries, (1, 0)) begin_times = jumps_start[word_boundaries[:-1]] end_times = jumps[word_boundaries[1:] - num_punctuations_per_tokens] begin_times = begin_times * AUDIO_TIME_PER_TOKEN end_times = end_times * AUDIO_TIME_PER_TOKEN if detect_disfluencies: to_be_added = [] i_start = 0 for i_word, toks in enumerate(word_tokens[:-1]): i_end = i_start + len(toks) if i_start in disfluences and i_word > 0: begin, end = disfluences[i_start] begin *= AUDIO_TIME_PER_TOKEN end *= AUDIO_TIME_PER_TOKEN to_be_added.append((i_word, begin, end)) i_start = i_end # Add from the end to avoid messing up the indices for i_word, begin, end in to_be_added[-1::-1]: words.insert(i_word, DISFLUENCY_MARK) word_tokens.insert(i_word, []) word_tokens_indices.insert(i_word, []) begin_times = np.insert(begin_times, i_word, begin) end_times = np.insert(end_times, i_word, end) # Ignore start / end tokens if not refine_whisper_precision_nframes: begin_times[1] = begin_times[0] if not refine_whisper_precision_nframes: end_times[-2] = end_times[-1] if unfinished_decoding: words = words[1:] word_tokens = word_tokens[1:] word_tokens_indices = word_tokens_indices[1:] begin_times = begin_times[1:] end_times = end_times[1:] else: words = words[1:-1] word_tokens = word_tokens[1:-1] word_tokens_indices = word_tokens_indices[1:-1] begin_times = begin_times[1:-1] end_times = end_times[1:-1] if plot: ymin = 1 plt.subplot(nplots, 1, 1) for i, (w, ws, begin, end) in enumerate( zip(words, word_tokens, begin_times, end_times) ): ymax = ymin + len(ws) if mfcc is None: plt.text( begin / AUDIO_TIME_PER_TOKEN, num_tokens - 0.5, w, ha="left", va="top", color="red", ) for x in [ begin, end, ]: plt.axvline( x / AUDIO_TIME_PER_TOKEN, color="red", linestyle="dotted", ymin=1 - ymin / num_tokens, ymax=0, # 1-ymax/num_tokens, ) ymin = ymax if plot_mfcc: plt.subplot(nplots, 1, 2) for i, (w, begin, end) in enumerate(zip(words, begin_times, end_times)): plt.text( begin * 2 / AUDIO_TIME_PER_TOKEN, mfcc.shape[-2] * 1.05, w, ha="left", va="bottom", color="red", ) for x in [ begin, end, ]: plt.axvline( x * 2 / AUDIO_TIME_PER_TOKEN, color="red", linestyle="dotted" ) if isinstance(plot, str): plt.savefig( f"{plot}.alignment{num_alignment_for_plot:03d}.jpg", bbox_inches="tight", pad_inches=0, ) else: plt.show() return [ dict( text=word, start=round_timestamp(begin + start_time), end=round_timestamp(end + start_time), tokens=tokens, tokens_indices=tokens_indices, ) for word, begin, end, tokens, tokens_indices in zip( words, begin_times, end_times, word_tokens, word_tokens_indices ) if not word.startswith("<|") ] def find_start_padding(mfcc): """Return start of padding given the mfcc, or None if there is no padding""" last_mfcc = mfcc[0, :, -1] if torch.min(last_mfcc) == torch.max(last_mfcc) == 0: candidate_index = mfcc.shape[-1] - 2 while candidate_index > 0: candidate = mfcc[0, :, candidate_index] if not torch.equal(candidate, last_mfcc): return candidate_index + 1 candidate_index -= 1 return 0 # WTF!? def round_confidence(x): return round(x, 3) def round_timestamp(x): return round(x, 2) _punctuation = ( "".join(c for c in string.punctuation if c not in ["-", "'"]) + "。,!?:”、…" ) def split_tokens_on_unicode( tokens: list, tokenizer, remove_punctuation_from_words=False, isolate_punctuations=False, ): words = [] word_tokens = [] word_tokens_indices = [] current_tokens = [] for token in tokens: current_tokens.append(token) decoded = tokenizer.decode_with_timestamps( [ t for t in current_tokens if t < tokenizer.eot or t >= tokenizer.timestamp_begin ] ) if "\ufffd" not in decoded: empty_tokens = [""] * (len(current_tokens) - 1) punctuation = not isolate_punctuations and ( decoded.strip() and decoded.strip() in _punctuation ) previous_special = len(word_tokens_indices) > 0 and ( word_tokens_indices[-1][-1] >= tokenizer.timestamp_begin ) if punctuation and not previous_special: if len(words) == 0: words = [""] word_tokens = [[]] if not remove_punctuation_from_words: words[-1] += decoded word_tokens[-1].extend(empty_tokens + [decoded]) word_tokens_indices[-1].extend(current_tokens) else: words.append(decoded) word_tokens.append(empty_tokens + [decoded]) word_tokens_indices.append(current_tokens) current_tokens = [] return words, word_tokens, word_tokens_indices def split_tokens_on_spaces( tokens: torch.Tensor, tokenizer, remove_punctuation_from_words=False ): ( subwords, subword_tokens_list, subword_tokens_indices_list, ) = split_tokens_on_unicode( tokens, tokenizer, remove_punctuation_from_words=remove_punctuation_from_words ) words = [] word_tokens = [] word_tokens_indices = [] for i, (subword, subword_tokens, subword_tokens_indices) in enumerate( zip(subwords, subword_tokens_list, subword_tokens_indices_list) ): special = subword_tokens_indices[0] >= tokenizer.timestamp_begin previous_special = (i > 0) and ( subword_tokens_indices_list[i - 1][0] >= tokenizer.timestamp_begin ) next_special = (i < len(subword_tokens_indices_list) - 1) and ( subword_tokens_indices_list[i + 1][0] >= tokenizer.timestamp_begin ) previous_space = (i > 0) and (not subwords[i - 1].strip()) is_space = not subword.strip() with_space = subword.startswith(" ") and not is_space punctuation = not is_space and subword.strip() in _punctuation if special or ( not previous_space and ( previous_special or (with_space and not punctuation) or (is_space and not next_special) ) ): words.append(subword.strip()) word_tokens.append(subword_tokens) word_tokens_indices.append(subword_tokens_indices) else: words[-1] = words[-1] + subword.strip() word_tokens[-1].extend(subword_tokens) word_tokens_indices[-1].extend(subword_tokens_indices) return words, word_tokens, word_tokens_indices silero_vad_model = None def get_vad_segments( audio, output_sample=False, min_speech_duration=0.1, min_silence_duration=0.1, dilatation=0.5, ): """ Get speech segments from audio using Silero VAD parameters: audio: torch.Tensor audio data *in 16kHz* output_sample: bool if True, return start and end in samples instead of seconds min_speech_duration: float minimum duration (in sec) of a speech segment min_silence_duration: float minimum duration (in sec) of a silence segment dilatation: float how much (in sec) to enlarge each speech segment detected by the VAD """ global silero_vad_model, silero_get_speech_ts if silero_vad_model is None: import onnxruntime onnxruntime.set_default_logger_severity( 3 ) # Remove warning "Removing initializer 'XXX'. It is not used by any node and should be removed from the model." repo_or_dir = os.path.expanduser( "~/.cache/torch/hub/snakers4_silero-vad_master" ) source = "local" if not os.path.exists(repo_or_dir): repo_or_dir = "snakers4/silero-vad" source = "github" silero_vad_model, utils = torch.hub.load( repo_or_dir=repo_or_dir, model="silero_vad", onnx=True, source=source ) silero_get_speech_ts = utils[0] # Cheap normalization of the volume audio = audio / max(0.1, audio.abs().max()) segments = silero_get_speech_ts( audio, silero_vad_model, min_speech_duration_ms=round(min_speech_duration * 1000), min_silence_duration_ms=round(min_silence_duration * 1000), return_seconds=False, ) if dilatation > 0: dilatation = round(dilatation * SAMPLE_RATE) new_segments = [] for seg in segments: new_seg = { "start": max(0, seg["start"] - dilatation), "end": min(len(audio), seg["end"] + dilatation), } if len(new_segments) > 0 and new_segments[-1]["end"] >= new_seg["start"]: new_segments[-1]["end"] = new_seg["end"] else: new_segments.append(new_seg) segments = new_segments ratio = 1 if output_sample else 1 / SAMPLE_RATE if ratio != 1: for seg in segments: seg["start"] *= ratio seg["end"] *= ratio if output_sample: for seg in segments: seg["start"] = round(seg["start"]) seg["end"] = round(seg["end"]) return segments def remove_non_speech( audio, use_sample=False, min_speech_duration=0.1, min_silence_duration=1, plot=False, ): """ Remove non-speech segments from audio (using Silero VAD), glue the speech segments together and return the result along with a function to convert timestamps from the new audio to the original audio """ segments = get_vad_segments( audio, output_sample=True, min_speech_duration=min_speech_duration, min_silence_duration=min_silence_duration, ) segments = [(seg["start"], seg["end"]) for seg in segments] if len(segments) == 0: segments = [(0, audio.shape[-1])] audio_speech = torch.cat([audio[..., s:e] for s, e in segments], dim=-1) if plot: import matplotlib.pyplot as plt plt.figure() plt.plot(audio) for s, e in segments: plt.axvspan(s, e, color="red", alpha=0.1) if isinstance(plot, str): plt.savefig(f"{plot}.VAD.jpg", bbox_inches="tight", pad_inches=0) else: plt.show() if not use_sample: segments = [ (float(s) / SAMPLE_RATE, float(e) / SAMPLE_RATE) for s, e in segments ] return audio_speech, lambda t, t2=None: do_convert_timestamps(segments, t, t2) def do_convert_timestamps(segments, t, t2=None): """ Convert timestamp from audio without non-speech segments to original audio (with non-speech segments) parameters: segments: list of tuple (start, end) corresponding to non-speech segments in original audio t: timestamp to convert t2: second timestamp to convert (optional), when the two timestamps should be in the same segment """ assert len(segments) ioffset = 0 # Input offset ooffset = 0 # Output offset ipreviousend = 0 result = [] for istart, iend in segments: ostart = ooffset oend = ostart + (iend - istart) ooffset = oend ioffset += istart - ipreviousend ipreviousend = iend t_in = t <= oend t2_in = t_in if t2 is None else t2 <= oend if t_in or t2_in: result.append( [ max(istart, min(iend, ioffset + t)), max(istart, min(iend, ioffset + t2)) if t2 is not None else None, ] ) if t_in and t2_in: break if not len(result): result.append([ioffset + t, ioffset + t2 if t2 is not None else None]) if len(result) > 1: # Minimize difference between durations result = sorted(result, key=lambda x: abs(abs(t2 - t) - abs(x[1] - x[0]))) result = result[0] if t2 is None: result = round(result[0], 2) else: result = [round(x, 2) for x in result] return result def remove_last_null_duration_words(transcription, words, recompute_text=False): """ Remove words with null duration happening at the end of a chunk (probable Whisper hallucinations) """ # First group segments by audio chunk segments_groups = {} seek = None current_chunk = -1 for i, segment in enumerate(transcription["segments"]): if segment["seek"] != seek: current_chunk += 1 seek = segment["seek"] segments_groups[i] = current_chunk # Remove words with null duration happening at the end of a chunk current_chunk = -1 is_last_empty = False to_remove = [] for i, word in enumerate(words[::-1]): # Reverse order i = len(words) - i - 1 empty = word["start"] == word["end"] idx_segment = word["idx_segment"] group = segments_groups[idx_segment] if current_chunk != group: is_last_empty = empty current_chunk = group elif not empty: is_last_empty = False if is_last_empty: # Remove word to_remove.append(i) # Shorten text of segment full_word = "".join(word["tokens"]) logger.debug( f"Removing word {i+1}/{len(words)} \"{full_word}\" with empty duration at the end of segment {idx_segment+1}/{len(transcription['segments'])}" ) segment = transcription["segments"][idx_segment] text = segment["text"] if not text.endswith(full_word): # see issue #62 if text.endswith(full_word[:-1]): full_word = full_word[:-1] elif text[:-1].endswith(full_word): text = text[:-1] else: raise RuntimeError(f'"{text}" not ending with "{full_word}"') text = text[: -len(full_word)] if i > 0 and words[i - 1]["idx_segment"] == idx_segment: segment["text"] = text else: logger.debug(f"Removing empty segment {idx_segment}") # Remove segment with no more words transcription["segments"].pop(idx_segment) for j in range(i + 1, len(words)): words[j]["idx_segment"] -= 1 recompute_text = True for i in to_remove: words.pop(i) # Warning: inplace modification if recompute_text: transcription["text"] = "".join([s["text"] for s in transcription["segments"]]) return transcription, words def ensure_increasing_positions(segments, min_duration=0): """ Ensure that "start" and "end" come in increasing order """ has_modified_backward = False previous_end = 0 for i, seg in enumerate(segments): if seg["start"] < previous_end: assert i > 0 new_start = round_timestamp((previous_end + seg["start"]) / 2) if new_start < segments[i - 1]["start"] + min_duration: new_start = previous_end else: segments[i - 1]["end"] = new_start has_modified_backward = True seg["start"] = new_start if seg["end"] <= seg["start"] + min_duration: seg["end"] = seg["start"] + min_duration previous_end = seg["end"] if has_modified_backward: return ensure_increasing_positions(segments, min_duration) previous_end = 0 for seg in segments: seg["start"] = round_timestamp(seg["start"]) seg["end"] = round_timestamp(seg["end"]) assert ( seg["start"] >= previous_end ), f"Got segment {seg} coming before the previous finishes ({previous_end} > {seg['start']})" assert seg["end"] >= seg["start"], f"Got segment {seg} with end < start" previous_end = seg["end"] return segments ## Some utilities for writing transcripts to files def flatten(list_of_lists, key=None): for sublist in list_of_lists: for item in sublist.get(key, []) if key else sublist: yield item def remove_keys(list_of_dicts, key): for d in list_of_dicts: yield {k: d[k] for k in d.keys() - {key}} def write_csv( transcript, file, sep=",", text_first=True, format_timestamps=None, header=False ): writer = csv.writer(file, delimiter=sep) if format_timestamps is None: format_timestamps = lambda x: x if header is True: header = ["text", "start", "end"] if text_first else ["start", "end", "text"] if header: writer.writerow(header) if text_first: writer.writerows( [ [ segment["text"].strip(), format_timestamps(segment["start"]), format_timestamps(segment["end"]), ] for segment in transcript ] ) else: writer.writerows( [ [ format_timestamps(segment["start"]), format_timestamps(segment["end"]), segment["text"].strip(), ] for segment in transcript ] ) # https://stackoverflow.com/questions/66588715/runtimeerror-cudnn-error-cudnn-status-not-initialized-using-pytorch # CUDA initialization may fail on old GPU card def force_cudnn_initialization(device=None, s=32): if device is None: device = torch.device("cuda") torch.nn.functional.conv2d( torch.zeros(s, s, s, s, device=device), torch.zeros(s, s, s, s, device=device) ) # base85-encoded (n_layers, n_heads) boolean arrays indicating the cross-attention heads that are # highly correlated to the word-level timing, i.e. the alignment between audio and text tokens. _ALIGNMENT_HEADS = { "tiny.en": b"ABzY8J1N>@0{>%R00Bk>$p{7v037`oCl~+#00", "tiny": b"ABzY8bu8Lr0{>%RKn9Fp%m@SkK7Kt=7ytkO", "base.en": b"ABzY8;40c<0{>%RzzG;p*o+Vo09|#PsxSZm00", "base": b"ABzY8KQ!870{>%RzyTQH3`Q^yNP!>##QT-?_)10{>%RpeA61k&I|OI3I$65C{;;pbCHh0B{qLQ;+}v00", "small": b"ABzY8DmU6=0{>%Rpa?J`kvJ6qF(V^F86#Xh7JUGMK}P%R7%R7}kK1fFL7w6%<-Pf*t^=N)Qr&0RR9", "large-v1": b"ABzY8r9j$a0{>%R7#4sLmoOs{s)o3~84-RPdcFk!JR%R7=D0pU<_bnWW*tkYAhobTNnu$jnkEkXqp)j;w1Tzk)UH3X%SZd&fFZ2fC2yj", # "large": b'ABzY8zd+h!0{>%R7=D0pU<_bnWW*tkYAhobTNnu$jnkEkXqp)j;w1Tzk)UH3X%SZd&fFZ2fC2yj', } _PARAMETERS_TO_MODEL_NAME = { 37184256: "tiny.en", 37184640: "tiny", 71825408: "base.en", 71825920: "base", 240582144: "small.en", 240582912: "small", 762320896: "medium.en", 762321920: "medium", 1541384960: "large", } def get_alignment_heads(model): if hasattr(model, "alignment_heads"): # Since version 20230306 return model.alignment_heads model_name = _PARAMETERS_TO_MODEL_NAME[_get_number_of_parameters(model)] if model_name == "large": if next(model.parameters())[0, 0, 0] > 0: model_name = "large-v1" else: model_name = "large-v2" num_layers = model.dims.n_text_layer num_heads = model.dims.n_text_head return _get_alignment_heads(model_name, num_layers, num_heads) def _get_alignment_heads(model_name, num_layers, num_heads): dump = _ALIGNMENT_HEADS[model_name] array = np.frombuffer(gzip.decompress(base64.b85decode(dump)), dtype=bool).copy() mask = torch.from_numpy(array).reshape(num_layers, num_heads) alignment_heads = mask.to_sparse() return alignment_heads def _get_number_of_parameters(model): return sum(p.numel() for p in model.parameters()) from typing import Optional, Union def load_model( name: str, device: Optional[Union[str, torch.device]] = None, download_root: str = None, in_memory: bool = False, ): extension = os.path.splitext(name)[-1] if os.path.isfile(name) else None if name in whisper.available_models() or extension == ".pt": return whisper.load_model( name, device=device, download_root=download_root, in_memory=in_memory ) # Otherwise, assume transformers if extension in [".ckpt", ".bin"]: model_path = name else: # Search for the cached file (download if necessary) try: import transformers except ImportError: raise ImportError( f"If you are trying to download a HuggingFace model with {name}, please install first the transformers library" ) from transformers.utils import cached_file try: model_path = cached_file( name, "pytorch_model.bin", cache_dir=download_root, use_auth_token=None, revision=None, ) except Exception as e: try: if isinstance(e, OSError): model_path = cached_file( name, "whisper.ckpt", cache_dir=download_root, use_auth_token=None, revision=None, ) else: raise e except: raise RuntimeError( f"Original error: {e}\nCould not find model {name} from HuggingFace nor local folders." ) # Load HF Model hf_state_dict = torch.load(model_path, map_location="cpu") # Rename layers for key in list(hf_state_dict.keys())[:]: new_key = hf_to_whisper_states(key) hf_state_dict[new_key] = hf_state_dict.pop(key) # Remove useless key (Speechbrain if "_mel_filters" in hf_state_dict: hf_state_dict.pop("_mel_filters") # Init Whisper Model and replace model weights dims = whisper.model.ModelDimensions(**states_to_dim(hf_state_dict)) whisper_model = whisper.model.Whisper(dims) whisper_model.load_state_dict(hf_state_dict) del hf_state_dict if hasattr(whisper_model, "alignment_heads"): del whisper_model.alignment_heads # Will be recomputed later whisper_model = whisper_model.to(device) return whisper_model # Credit: https://github.com/openai/whisper/discussions/830 def hf_to_whisper_states(text): text = re.sub(".layers.", ".blocks.", text) text = re.sub(".self_attn.", ".attn.", text) text = re.sub(".q_proj.", ".query.", text) text = re.sub(".k_proj.", ".key.", text) text = re.sub(".v_proj.", ".value.", text) text = re.sub(".out_proj.", ".out.", text) text = re.sub(".fc1.", ".mlp.0.", text) text = re.sub(".fc2.", ".mlp.2.", text) text = re.sub(".fc3.", ".mlp.3.", text) text = re.sub(".fc3.", ".mlp.3.", text) text = re.sub(".encoder_attn.", ".cross_attn.", text) text = re.sub(".cross_attn.ln.", ".cross_attn_ln.", text) text = re.sub(".embed_positions.weight", ".positional_embedding", text) text = re.sub(".embed_tokens.", ".token_embedding.", text) text = re.sub("model.", "", text) text = re.sub("attn.layer_norm.", "attn_ln.", text) text = re.sub(".final_layer_norm.", ".mlp_ln.", text) text = re.sub("encoder.layer_norm.", "encoder.ln_post.", text) text = re.sub("decoder.layer_norm.", "decoder.ln.", text) return text def states_to_dim(state_dict): n_audio_state = len(state_dict["encoder.ln_post.bias"]) n_text_state = len(state_dict["decoder.ln.bias"]) return { "n_mels": state_dict["encoder.conv1.weight"].shape[1], # 80 "n_vocab": state_dict["decoder.token_embedding.weight"].shape[ 0 ], # 51864 / 51865 "n_audio_ctx": state_dict["encoder.positional_embedding"].shape[0], # 1500 "n_audio_state": n_audio_state, # 384 / 512 / 768 / 1024 / 1280 "n_audio_head": n_audio_state // 64, # 6 / 8 / 12 / 16 / 20 "n_audio_layer": len( set( [ ".".join(k.split(".")[:3]) for k in state_dict.keys() if "encoder.blocks." in k ] ) ), # 4 / 6 / 12 / 24 / 32 "n_text_ctx": state_dict["decoder.positional_embedding"].shape[0], # 448 "n_text_state": n_text_state, # 384 / 512 / 768 / 1024 / 1280 "n_text_head": n_text_state // 64, # 6 / 8 / 12 / 16 / 20 "n_text_layer": len( set( [ ".".join(k.split(".")[:3]) for k in state_dict.keys() if "decoder.blocks." in k ] ) ), # 4 / 6 / 12 / 24 / 32 } def cli(): import os import sys import argparse import json from whisper.utils import str2bool, optional_float, optional_int try: # Old whisper version # Before https://github.com/openai/whisper/commit/da600abd2b296a5450770b872c3765d0a5a5c769 from whisper.utils import write_txt, write_srt, write_vtt write_tsv = lambda transcript, file: write_csv( transcript, file, sep="\t", header=True, text_first=False, format_timestamps=lambda x: round(1000 * x), ) except ImportError: # New whisper version from whisper.utils import get_writer def do_write(transcript, file, output_format): writer = get_writer(output_format, os.path.curdir) try: return writer.write_result({"segments": transcript}, file) except TypeError: # Version > 20230314 return writer.write_result( {"segments": list(transcript)}, file, { "highlight_words": False, "max_line_width": None, "max_line_count": None, }, ) def get_do_write(output_format): return lambda transcript, file: do_write(transcript, file, output_format) write_txt = get_do_write("txt") write_srt = get_do_write("srt") write_vtt = get_do_write("vtt") write_tsv = get_do_write("tsv") parser = argparse.ArgumentParser( description="Transcribe a single audio with whisper and compute word timestamps", formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) parser.add_argument( "-v", "--version", help="show version and exit", action="version", version=f"{__version__}", ) parser.add_argument( "--versions", help="show versions (of whisper-timestamped and whisper) and exit", action="version", version=f"{__version__} -- Whisper {whisper.__version__} in {os.path.realpath(os.path.dirname(whisper.__file__))}", ) parser.add_argument("audio", help="audio file(s) to transcribe", nargs="+") parser.add_argument( "--model", help=f"name of the Whisper model to use. Examples: {', '.join(whisper.available_models())}", default="small", ) parser.add_argument( "--model_dir", default=None, help="the path to save model files; uses ~/.cache/whisper by default", type=str, ) parser.add_argument( "--device", default="cuda:0" if torch.cuda.is_available() else "cpu", help="device to use for PyTorch inference", ) parser.add_argument( "--output_dir", "-o", default=None, help="directory to save the outputs", type=str, ) valid_formats = ["txt", "vtt", "srt", "tsv", "csv", "json"] def str2output_formats(string): if string == "all": return valid_formats formats = string.split(",") for format in formats: if format not in valid_formats: raise ValueError(f"Expected one of {valid_formats}, got {format}") return formats parser.add_argument( "--output_format", "-f", default="all", help=f"Format(s) of the output file(s). Possible formats are: {', '.join(valid_formats)}. Several formats can be specified by using commas (ex: \"json,vtt,srt\"). By default (\"all\"), all available formats will be produced", type=str2output_formats, ) parser.add_argument( "--task", default="transcribe", help="whether to perform X->X speech recognition ('transcribe') or X->English translation ('translate')", choices=["transcribe", "translate"], type=str, ) parser.add_argument( "--language", help=f"language spoken in the audio, specify None to perform language detection.", choices=sorted(whisper.tokenizer.LANGUAGES.keys()) + sorted([k.title() for k in whisper.tokenizer.TO_LANGUAGE_CODE.keys()]), default=None, ) # f"{', '.join(sorted(k+'('+v+')' for k,v in whisper.tokenizer.LANGUAGES.items()))} parser.add_argument( "--vad", default=False, help="whether to run Voice Activity Detection (VAD) to remove non-speech segment before applying Whisper model (removes hallucinations)", type=str2bool, ) parser.add_argument( "--detect_disfluencies", default=False, help="whether to try to detect disfluencies, marking them as special words [*]", type=str2bool, ) parser.add_argument( "--recompute_all_timestamps", default=not TRUST_WHISPER_TIMESTAMP_BY_DEFAULT, help="Do not rely at all on Whisper timestamps (Experimental option: did not bring any improvement, but could be useful in cases where Whipser segment timestamp are wrong by more than 0.5 seconds)", type=str2bool, ) parser.add_argument( "--punctuations_with_words", default=True, help="whether to include punctuations in the words", type=str2bool, ) parser.add_argument( "--temperature", default=0.0, help="temperature to use for sampling", type=float ) parser.add_argument( "--best_of", type=optional_int, default=None if USE_EFFICIENT_BY_DEFAULT else 5, help="number of candidates when sampling with non-zero temperature", ) parser.add_argument( "--beam_size", type=optional_int, default=None if USE_EFFICIENT_BY_DEFAULT else 5, help="number of beams in beam search, only applicable when temperature is zero", ) parser.add_argument( "--patience", type=float, default=None, help="optional patience value to use in beam decoding, as in https://arxiv.org/abs/2204.05424, the default (1.0) is equivalent to conventional beam search", ) parser.add_argument( "--length_penalty", type=float, default=None, help="optional token length penalty coefficient (alpha) as in https://arxiv.org/abs/1609.08144, uses simple length normalization by default", ) parser.add_argument( "--suppress_tokens", default="-1", help="comma-separated list of token ids to suppress during sampling; '-1' will suppress most special characters except common punctuations", type=str, ) parser.add_argument( "--initial_prompt", default=None, help="optional text to provide as a prompt for the first window.", type=str, ) parser.add_argument( "--condition_on_previous_text", default=True, help="if True, provide the previous output of the model as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop", type=str2bool, ) parser.add_argument( "--fp16", default=None, help="whether to perform inference in fp16; Automatic by default (True if GPU available, False otherwise)", type=str2bool, ) parser.add_argument( "--temperature_increment_on_fallback", default=0.0 if USE_EFFICIENT_BY_DEFAULT else 0.2, help="temperature to increase when falling back when the decoding fails to meet either of the thresholds below", type=optional_float, ) parser.add_argument( "--compression_ratio_threshold", default=2.4, help="if the gzip compression ratio is higher than this value, treat the decoding as failed", type=optional_float, ) parser.add_argument( "--logprob_threshold", default=-1.0, help="if the average log probability is lower than this value, treat the decoding as failed", type=optional_float, ) parser.add_argument( "--no_speech_threshold", default=0.6, help="if the probability of the <|nospeech|> token is higher than this value AND the decoding has failed due to `logprob_threshold`, consider the segment as silence", type=optional_float, ) parser.add_argument( "--threads", default=0, help="number of threads used by torch for CPU inference; supercedes MKL_NUM_THREADS/OMP_NUM_THREADS", type=optional_int, ) parser.add_argument( "--compute_confidence", default=True, help="whether to compute confidence scores for words", type=str2bool, ) parser.add_argument( "--verbose", type=str2bool, default=False, help="whether to print out the progress and debug messages of Whisper", ) parser.add_argument( "--plot", help="plot word alignments (save the figures if an --output_dir is specified, otherwhise just show figures that have to be closed to continue)", default=False, action="store_true", ) parser.add_argument( "--debug", help="print some debug information about word alignement", default=False, action="store_true", ) class ActionSetAccurate(argparse.Action): def __init__(self, option_strings, dest, nargs=None, **kwargs): assert nargs is None super().__init__(option_strings, dest, nargs=0, **kwargs) def __call__(self, parser, namespace, values, option_string=None): setattr(namespace, "best_of", 5) setattr(namespace, "beam_size", 5) setattr(namespace, "temperature_increment_on_fallback", 0.2) parser.add_argument( "--accurate", help="Shortcut to use the same default option as in Whisper (best_of=5, beam_search=5, temperature_increment_on_fallback=0.2)", action=ActionSetAccurate, ) class ActionSetEfficient(argparse.Action): def __init__(self, option_strings, dest, nargs=None, **kwargs): assert nargs is None super().__init__(option_strings, dest, nargs=0, **kwargs) def __call__(self, parser, namespace, values, option_string=None): setattr(namespace, "best_of", None) setattr(namespace, "beam_size", None) setattr(namespace, "temperature_increment_on_fallback", None) parser.add_argument( "--efficient", help="Shortcut to disable beam size and options that requires to sample several times, for an efficient decoding", action=ActionSetEfficient, ) parser.add_argument( "--naive", help="use naive approach, doing inference twice (once to get the transcription, once to get word timestamps and confidence scores).", default=False, action="store_true", ) args = parser.parse_args().__dict__ args.pop("accurate") args.pop("efficient") temperature = args.pop("temperature") temperature_increment_on_fallback = args.pop("temperature_increment_on_fallback") if temperature_increment_on_fallback: temperature = tuple( np.arange(temperature, 1.0 + 1e-6, temperature_increment_on_fallback) ) else: temperature = [temperature] threads = args.pop("threads") if threads: torch.set_num_threads(threads) audio_files = args.pop("audio") model = args.pop("model") device = args.pop("device") model_dir = args.pop("model_dir") if device.lower().startswith("cuda"): force_cudnn_initialization(device) output_format = args.pop("output_format") model = load_model(model, device=device, download_root=model_dir) plot_word_alignment = args.pop("plot") debug = args.pop("debug") logging.basicConfig() if debug: logger.setLevel(logging.DEBUG) # This supposes to plug a logger with name "WHISPER" into Whisper source code (no harm if it's not set) logging.getLogger("WHISPER").setLevel(logging.DEBUG) output_dir = args.pop("output_dir") if output_dir and not os.path.isdir(output_dir): os.makedirs(output_dir) args["naive_approach"] = args.pop("naive") args["remove_punctuation_from_words"] = not args.pop("punctuations_with_words") args["compute_word_confidence"] = args.pop("compute_confidence") args["trust_whisper_timestamps"] = not args.pop("recompute_all_timestamps") # Quick early check for audio_path in audio_files: assert os.path.isfile(audio_path), f"File {audio_path} does not exist" for audio_path in audio_files: outname = ( os.path.join(output_dir, os.path.basename(audio_path)) if output_dir else None ) result = transcribe_timestamped( model, audio_path, temperature=temperature, plot_word_alignment=outname if (outname and plot_word_alignment) else plot_word_alignment, **args, ) if output_dir: if "json" in output_format: # save JSON with open(outname + ".words.json", "w", encoding="utf-8") as js: json.dump(result, js, indent=2, ensure_ascii=False) # save TXT if "txt" in output_format: with open(outname + ".txt", "w", encoding="utf-8") as txt: write_txt(result["segments"], file=txt) # save VTT if "vtt" in output_format: with open(outname + ".vtt", "w", encoding="utf-8") as vtt: write_vtt(remove_keys(result["segments"], "words"), file=vtt) with open(outname + ".words.vtt", "w", encoding="utf-8") as vtt: write_vtt(flatten(result["segments"], "words"), file=vtt) # save SRT if "srt" in output_format: with open(outname + ".srt", "w", encoding="utf-8") as srt: write_srt(remove_keys(result["segments"], "words"), file=srt) with open(outname + ".words.srt", "w", encoding="utf-8") as srt: write_srt(flatten(result["segments"], "words"), file=srt) # save CSV if "csv" in output_format: with open(outname + ".csv", "w", encoding="utf-8") as csv: write_csv(result["segments"], file=csv) with open(outname + ".words.csv", "w", encoding="utf-8") as csv: write_csv(flatten(result["segments"], "words"), file=csv) # save TSV if "tsv" in output_format: with open(outname + ".tsv", "w", encoding="utf-8") as csv: write_tsv(result["segments"], file=csv) with open(outname + ".words.tsv", "w", encoding="utf-8") as csv: write_tsv(flatten(result["segments"], "words"), file=csv) elif not args["verbose"]: json.dump(filtered_keys(result), sys.stdout, indent=2, ensure_ascii=False) def filtered_keys( result, keys=["text", "segments", "words", "language", "start", "end", "confidence"] ): if isinstance(result, dict): return {k: filtered_keys(v, keys) for k, v in result.items() if k in keys} if isinstance(result, list): return [filtered_keys(v, keys) for v in result] if isinstance(result, float): return round(result, 2) return result if __name__ == "__main__": cli()