# -*- coding: utf-8 -*- """Flower-recognition-app.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1Oxv1S-3SmLY0i0vKtlsduK8RVcj4EccJ """ # Commented out IPython magic to ensure Python compatibility. # %reload_ext autoreload # %autoreload 2 # %matplotlib inline bs = 32 # batch size version = 2 # Installing all 3 libraries in one go: fastai, fastbook, nbdev #!pip install -Uqq fastai fastbook nbdev #!pip install gradio==3.50.0 from fastai import * #from fastbook import * from fastai.vision.all import * # Commented out IPython magic to ensure Python compatibility. # %cd /content/drive/My Drive/Mastercourse/Flower recognizer flower_labels = [ 'Beli flower', 'Gada flower', 'Joba flower', 'Kamini flower', 'Kodom flower', 'Palash flower', 'Rose flower', 'Sheuli flower', 'Sunflower flower', 'Water Lily' ] img_path = 'test_images' model_path = f'models/flower-recognizer-v{version}.pkl' #load the model from the pickle file model = load_learner(model_path) # Defining a function to recognize an image def recognize_image(image): pred, idx, probs = model.predict(image) return dict(zip(flower_labels, map(float, probs))) img = PILImage.create(f'test_images/unknown_flower_00.jpg') img.thumbnail((192,192)) img recognize_image(img) import gradio as gr image = gr.inputs.Image(shape=(192,192)) label = gr.outputs.Label() examples = [ 'test_images/unknown_flower_00.jpg', 'test_images/unknown_flower_01.jpg', 'test_images/unknown_flower_02.jpg', 'test_images/unknown_flower_03.jpg', 'test_images/unknown_flower_04.jpg', 'test_images/unknown_flower_05.jpg', ] iface = gr.Interface(fn=recognize_image, inputs=image, outputs=label, examples=examples) iface.launch(share=True)