from asyncio import constants
import gradio as gr
import requests
import os
from base64 import b64decode
from PIL import Image
def generate_image(seed,psi):
iface = gr.Interface.load("spaces/hysts/StyleGAN-Human")
print("about to die",iface,dir(iface))
print(iface.blocks,iface.children,iface.fns)
img=iface.fns[0].fn(seed,psi)
#wrong format, gah! convert to numpy array
header, encoded = img.split(",", 1)
data = b64decode(encoded)
image = Image.open("out.jpg")
image_np = np.array(image)
print('got img',img)
return image_np
def generate_model(img):
iface = gr.Interface.load("spaces/nagolinc/styleGanHuman_and_PIFu")
model,file=iface(img)
return model,file
demo = gr.Blocks()
with demo:
gr.Markdown("
StyleGan-Human + PIFu
")
gr.Markdown(
"create a person and then generate a model from that person's image"
)
with gr.Row():
b0 = gr.Button("generate image")
b1 = gr.Button("generate model")
with gr.Row():
seed=gr.Number(default=0, label='Seed')
psi=gr.Slider(0, 2, step=0.05, default=0.7, label='Truncation psi')
#outputImage = gr.Image(label="portrait",type="filepath", shape=(256,256))
output_image = gr.outputs.Image(type='numpy', label='Output')
model = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model")
file= gr.File(label="Download 3D Model")
b0.click(generate_image,inputs=[seed,psi],outputs=output_image)
b1.click(generate_model, inputs=output_image, outputs=[model,file])
demo.launch(enable_queue=True, debug=True)