Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -13,35 +13,17 @@ model.eval()
|
|
| 13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 14 |
model.to(device)
|
| 15 |
|
| 16 |
-
#
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
"progress": ["completed", "ongoing", "in-progress", "starting", "finished", "under construction"]
|
| 21 |
-
}
|
| 22 |
-
|
| 23 |
-
# Function to detect activities and materials
|
| 24 |
-
def detect_construction_info(caption):
|
| 25 |
-
activity_found = []
|
| 26 |
-
material_found = []
|
| 27 |
-
progress_found = []
|
| 28 |
-
|
| 29 |
-
# Split the caption into words and check for the terms
|
| 30 |
-
for word in caption.split():
|
| 31 |
-
word_lower = word.lower()
|
| 32 |
-
if word_lower in construction_terms["activities"]:
|
| 33 |
-
activity_found.append(word)
|
| 34 |
-
elif word_lower in construction_terms["materials"]:
|
| 35 |
-
material_found.append(word)
|
| 36 |
-
elif word_lower in construction_terms["progress"]:
|
| 37 |
-
progress_found.append(word)
|
| 38 |
|
| 39 |
-
#
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
return
|
| 45 |
|
| 46 |
# Function to generate the daily progress report
|
| 47 |
def generate_dpr(files):
|
|
@@ -59,16 +41,11 @@ def generate_dpr(files):
|
|
| 59 |
if image.mode != "RGB":
|
| 60 |
image = image.convert("RGB")
|
| 61 |
|
| 62 |
-
#
|
| 63 |
-
|
| 64 |
-
output = model.generate(**inputs, max_new_tokens=50)
|
| 65 |
-
caption = processor.decode(output[0], skip_special_tokens=True)
|
| 66 |
-
|
| 67 |
-
# Get detailed construction information based on the caption
|
| 68 |
-
detailed_caption = detect_construction_info(caption)
|
| 69 |
|
| 70 |
-
# Generate DPR section for this image
|
| 71 |
-
dpr_section = f"\nImage: {file.name}\
|
| 72 |
dpr_text.append(dpr_section)
|
| 73 |
|
| 74 |
# Generate a PDF report
|
|
@@ -77,7 +54,7 @@ def generate_dpr(files):
|
|
| 77 |
c.drawString(100, 750, "Daily Progress Report")
|
| 78 |
c.drawString(100, 730, f"Generated on: {current_time}")
|
| 79 |
|
| 80 |
-
# Add the detailed captions for each image to the PDF
|
| 81 |
y_position = 700
|
| 82 |
for section in dpr_text:
|
| 83 |
c.drawString(100, y_position, section)
|
|
@@ -96,7 +73,7 @@ iface = gr.Interface(
|
|
| 96 |
inputs=gr.Files(type="filepath", label="Upload Site Photos"), # Handle batch upload of images
|
| 97 |
outputs="file",
|
| 98 |
title="Daily Progress Report Generator",
|
| 99 |
-
description="Upload up to 10 site photos. The AI model will detect construction activities, materials, and progress and generate a PDF report.",
|
| 100 |
allow_flagging="never" # Optional: Disable flagging
|
| 101 |
)
|
| 102 |
|
|
|
|
| 13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 14 |
model.to(device)
|
| 15 |
|
| 16 |
+
# Inference function to generate captions from images dynamically
|
| 17 |
+
def generate_captions_from_image(image):
|
| 18 |
+
if image.mode != "RGB":
|
| 19 |
+
image = image.convert("RGB")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
# Preprocess the image and generate a caption
|
| 22 |
+
inputs = processor(image, return_tensors="pt").to(device, torch.float16)
|
| 23 |
+
output = model.generate(**inputs, max_new_tokens=50)
|
| 24 |
+
caption = processor.decode(output[0], skip_special_tokens=True)
|
| 25 |
+
|
| 26 |
+
return caption
|
| 27 |
|
| 28 |
# Function to generate the daily progress report
|
| 29 |
def generate_dpr(files):
|
|
|
|
| 41 |
if image.mode != "RGB":
|
| 42 |
image = image.convert("RGB")
|
| 43 |
|
| 44 |
+
# Dynamically generate a caption based on the image
|
| 45 |
+
caption = generate_captions_from_image(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
+
# Generate DPR section for this image with dynamic caption
|
| 48 |
+
dpr_section = f"\nImage: {file.name}\nDescription: {caption}\n"
|
| 49 |
dpr_text.append(dpr_section)
|
| 50 |
|
| 51 |
# Generate a PDF report
|
|
|
|
| 54 |
c.drawString(100, 750, "Daily Progress Report")
|
| 55 |
c.drawString(100, 730, f"Generated on: {current_time}")
|
| 56 |
|
| 57 |
+
# Add the detailed captions for each image to the PDF (in text format)
|
| 58 |
y_position = 700
|
| 59 |
for section in dpr_text:
|
| 60 |
c.drawString(100, y_position, section)
|
|
|
|
| 73 |
inputs=gr.Files(type="filepath", label="Upload Site Photos"), # Handle batch upload of images
|
| 74 |
outputs="file",
|
| 75 |
title="Daily Progress Report Generator",
|
| 76 |
+
description="Upload up to 10 site photos. The AI model will dynamically detect construction activities, materials, and progress and generate a PDF report.",
|
| 77 |
allow_flagging="never" # Optional: Disable flagging
|
| 78 |
)
|
| 79 |
|