import numpy as np from read_data import prepare_all_leads, visualize_sig from postprocessing import predict_disease, labels_map from scipy import stats as st import warnings warnings.filterwarnings("ignore") def make_prediction(path, visualize=False, butter_filter=True): leads = prepare_all_leads(path, butter_filter=butter_filter) visualize_sig([leads[0][0], leads[1][0], leads[2][0]]) if visualize else None all, x, y, z = predict_disease(*leads) index = st.mode(np.argmax(all, axis=1))[0][0] confidence = all.mean(axis=0)[index] return labels_map[index], float(confidence) if __name__ == "__main__": prediction = make_prediction("data/faizan_r8.txt") # prediction = make_prediction("data/a_fib.npy") print(prediction)