/* Inference for Llama-2 Transformer model in pure C * With added CUDA support initially drawing from * https://github.com/ankan-ban/llama2.cu/blob/master/llama2.cu * and structured in a way that hopefully makes keeping it * up-to-date straightforward. */ #include #include #include #include #include #include #include #include #include #if defined _WIN32 #include "win.h" #else #include #include #endif #include "llama2.h" #ifdef USE_CUDA #include #include #include // Each CUDA function call should be checked for errors. #define CUCHK(err) cuda_check((err), __FILE__, __LINE__) inline void cuda_check(cudaError_t error_code, const char *file, int line) { if (error_code != cudaSuccess) { fprintf(stderr, "CUDA Error %d: %s. In file '%s' on line %d\n", error_code, cudaGetErrorString(error_code), file, line); fflush(stderr); exit(error_code); } } // cublasHandle_t g_cublas_handle = nullptr; // void create_cublas_handle() { // cublasStatus_t stat = cublasCreate(&g_cublas_handle); // FIXME cublasDestroy // if (stat != CUBLAS_STATUS_SUCCESS) { // printf ("CUBLAS initialization failed\n"); // exit(EXIT_FAILURE); // } // } // void destroy_cublas_handle() { // cublasStatus_t stat = cublasDestroy(g_cublas_handle); // if (stat != CUBLAS_STATUS_SUCCESS) { // printf ("CUBLAS initialization failed\n"); // exit(EXIT_FAILURE); // } // } #endif // ---------------------------------------------------------------------------- // Transformer model typedef struct { int dim; // transformer dimension int hidden_dim; // for ffn layers int n_layers; // number of layers int n_heads; // number of query heads int n_kv_heads; // number of key/value heads (can be < query heads because of multiquery) int vocab_size; // vocabulary size, usually 256 (byte-level) int seq_len; // max sequence length } Config; // CUDA NOTE: The TransformerWeights structure will be stored on the host, // but all of the pointers in the structure will point to data on the GPU. // The checkpoint file is mmap-ed to the host and the weights portion // is allocated on and copied to the GPU. Then, memory_map_weights() updates // these structure pointers to point to the proper location. Happily, this // function is the same for both C and CUDA. typedef struct { // token embedding table float* token_embedding_table; // (vocab_size, dim) // weights for rmsnorms float* rms_att_weight; // (layer, dim) rmsnorm weights float* rms_ffn_weight; // (layer, dim) // weights for matmuls. note dim == n_heads * head_size float* wq; // (layer, dim, n_heads * head_size) float* wk; // (layer, dim, n_kv_heads * head_size) float* wv; // (layer, dim, n_kv_heads * head_size) float* wo; // (layer, n_heads * head_size, dim) // weights for ffn float* w1; // (layer, hidden_dim, dim) float* w2; // (layer, dim, hidden_dim) float* w3; // (layer, hidden_dim, dim) // final rmsnorm float* rms_final_weight; // (dim,) // (optional) classifier weights for the logits, on the last layer float* wcls; } TransformerWeights; // CUDA NOTE: The RunState structure will be stored on the host, but all of the // pointers in the structure will point to data on the GPU, created via // cudaMalloc. The exception is logits which is the final result of the // transformer & is copied from the GPU as the last step in the transformer // and is used by the host. typedef struct { // current wave of activations float *x; // activation at current time stamp (dim,) float *xb; // same, but inside a residual branch (dim,) float *xb2; // an additional buffer just for convenience (dim,) float *hb; // buffer for hidden dimension in the ffn (hidden_dim,) float *hb2; // buffer for hidden dimension in the ffn (hidden_dim,) float *q; // query (dim,) float *k; // key (dim,) float *v; // value (dim,) float *att; // buffer for scores/attention values (n_heads, seq_len) #ifdef USE_CUDA float *logits_gpu; // output logits in GPU #endif float *logits; // output logits in CPU // kv cache float* key_cache; // (layer, seq_len, dim) float* value_cache; // (layer, seq_len, dim) } RunState; typedef struct { Config config; // the hyperparameters of the architecture (the blueprint) TransformerWeights weights; // the weights of the model RunState state; // buffers for the "wave" of activations in the forward pass // some more state needed to properly clean up the memory mapping (sigh) int fd; // file descriptor for memory mapping float* data; // memory mapped data pointer ssize_t file_size; // size of the checkpoint file in bytes } Transformer; #ifdef USE_CUDA void malloc_run_state(RunState* s, Config* p) { // we calloc instead of malloc to keep valgrind happy int kv_dim = (p->dim * p->n_kv_heads) / p->n_heads; CUCHK(cudaMalloc((void**)&s->x, p->dim * sizeof(float))); CUCHK(cudaMalloc((void**)&s->xb, p->dim * sizeof(float))); CUCHK(cudaMalloc((void**)&s->xb2, p->dim * sizeof(float))); CUCHK(cudaMalloc((void**)&s->hb, p->hidden_dim * sizeof(float))); CUCHK(cudaMalloc((void**)&s->hb2, p->hidden_dim * sizeof(float))); CUCHK(cudaMalloc((void**)&s->q, p->dim * sizeof(float))); CUCHK(cudaMalloc((void**)&s->key_cache, p->n_layers * p->seq_len * kv_dim * sizeof(float))); CUCHK(cudaMalloc((void**)&s->value_cache, p->n_layers * p->seq_len * kv_dim * sizeof(float))); CUCHK(cudaMalloc((void**)&s->att, p->n_heads * p->seq_len * sizeof(float))); CUCHK(cudaMalloc((void**)&s->logits_gpu, p->vocab_size * sizeof(float))); s->logits = (float *)calloc(p->vocab_size, sizeof(float)); // ensure all mallocs went fine if (!s->x || !s->xb || !s->xb2 || !s->hb || !s->hb2 || !s->q || !s->key_cache || !s->value_cache || !s->att || !s->logits_gpu || !s->logits) { fprintf(stderr, "malloc failed!\n"); exit(EXIT_FAILURE); } } #else void malloc_run_state(RunState* s, Config* p) { // we calloc instead of malloc to keep valgrind happy int kv_dim = (p->dim * p->n_kv_heads) / p->n_heads; s->x = (float *)calloc(p->dim, sizeof(float)); s->xb = (float *)calloc(p->dim, sizeof(float)); s->xb2 = (float *)calloc(p->dim, sizeof(float)); s->hb = (float *)calloc(p->hidden_dim, sizeof(float)); s->hb2 = (float *)calloc(p->hidden_dim, sizeof(float)); s->q = (float *)calloc(p->dim, sizeof(float)); s->key_cache = (float *)calloc(p->n_layers * p->seq_len * kv_dim, sizeof(float)); s->value_cache = (float *)calloc(p->n_layers * p->seq_len * kv_dim, sizeof(float)); s->att = (float *)calloc(p->n_heads * p->seq_len, sizeof(float)); s->logits = (float *)calloc(p->vocab_size, sizeof(float)); // ensure all mallocs went fine if (!s->x || !s->xb || !s->xb2 || !s->hb || !s->hb2 || !s->q || !s->key_cache || !s->value_cache || !s->att || !s->logits) { fprintf(stderr, "malloc failed!\n"); exit(EXIT_FAILURE); } } #endif #ifdef USE_CUDA void free_run_state(RunState* s) { CUCHK(cudaFree(s->x)); CUCHK(cudaFree(s->xb)); CUCHK(cudaFree(s->xb2)); CUCHK(cudaFree(s->hb)); CUCHK(cudaFree(s->hb2)); CUCHK(cudaFree(s->q)); CUCHK(cudaFree(s->att)); CUCHK(cudaFree(s->logits_gpu)); free(s->logits); CUCHK(cudaFree(s->key_cache)); CUCHK(cudaFree(s->value_cache)); } #else void free_run_state(RunState* s) { free(s->x); free(s->xb); free(s->xb2); free(s->hb); free(s->hb2); free(s->q); free(s->att); free(s->logits); free(s->key_cache); free(s->value_cache); } #endif void memory_map_weights(TransformerWeights *w, Config* p, float* ptr, int shared_weights) { int head_size = p->dim / p->n_heads; // make sure the multiplications below are done in 64bit to fit the parameter counts of 13B+ models unsigned long long n_layers = p->n_layers; w->token_embedding_table = ptr; ptr += p->vocab_size * p->dim; w->rms_att_weight = ptr; ptr += n_layers * p->dim; w->wq = ptr; ptr += n_layers * p->dim * (p->n_heads * head_size); w->wk = ptr; ptr += n_layers * p->dim * (p->n_kv_heads * head_size); w->wv = ptr; ptr += n_layers * p->dim * (p->n_kv_heads * head_size); w->wo = ptr; ptr += n_layers * (p->n_heads * head_size) * p->dim; w->rms_ffn_weight = ptr; ptr += n_layers * p->dim; w->w1 = ptr; ptr += n_layers * p->dim * p->hidden_dim; w->w2 = ptr; ptr += n_layers * p->hidden_dim * p->dim; w->w3 = ptr; ptr += n_layers * p->dim * p->hidden_dim; w->rms_final_weight = ptr; ptr += p->dim; ptr += p->seq_len * head_size / 2; // skip what used to be freq_cis_real (for RoPE) ptr += p->seq_len * head_size / 2; // skip what used to be freq_cis_imag (for RoPE) w->wcls = shared_weights ? w->token_embedding_table : ptr; } void read_checkpoint(char* checkpoint, Config* config, TransformerWeights* weights, int* fd, float** data, ssize_t* file_size) { FILE *file = fopen(checkpoint, "rb"); if (!file) { fprintf(stderr, "Couldn't open file %s\n", checkpoint); exit(EXIT_FAILURE); } // read in the config header if (fread(config, sizeof(Config), 1, file) != 1) { exit(EXIT_FAILURE); } // negative vocab size is hacky way of signaling unshared weights. bit yikes. int shared_weights = config->vocab_size > 0 ? 1 : 0; config->vocab_size = abs(config->vocab_size); // figure out the file size fseek(file, 0, SEEK_END); // move file pointer to end of file *file_size = ftell(file); // get the file size, in bytes fclose(file); // memory map the Transformer weights into the data pointer *fd = open(checkpoint, O_RDONLY); // open in read only mode if (*fd == -1) { fprintf(stderr, "open failed!\n"); exit(EXIT_FAILURE); } *data = (float *)mmap(NULL, *file_size, PROT_READ, MAP_PRIVATE, *fd, 0); if (*data == MAP_FAILED) { fprintf(stderr, "mmap failed!\n"); exit(EXIT_FAILURE); } #ifdef USE_CUDA // allocate & copy mmap data to the gpu first // TODO: allocate & copy just a portion to the GPU if the weights are too big // to fit in the GPU, then copy the data only as needed while running. float* weights_ptr; size_t weights_size = *file_size - sizeof(Config); CUCHK(cudaMalloc((void**)&weights_ptr, weights_size)); CUCHK(cudaMemcpy(weights_ptr, *data + sizeof(Config)/sizeof(float), weights_size, cudaMemcpyHostToDevice)); #else float* weights_ptr = *data + sizeof(Config)/sizeof(float); #endif memory_map_weights(weights, config, weights_ptr, shared_weights); } void build_transformer(Transformer *t, char* checkpoint_path) { // read in the Config and the Weights from the checkpoint read_checkpoint(checkpoint_path, &t->config, &t->weights, &t->fd, &t->data, &t->file_size); // allocate the RunState buffers malloc_run_state(&t->state, &t->config); } void free_transformer(Transformer* t) { // close the memory mapping if (t->data != MAP_FAILED) { munmap(t->data, t->file_size); } if (t->fd != -1) { close(t->fd); } #ifdef USE_CUDA // we cudaMalloc a region of memory, then hand the address to // the token_embedding_table field. Free it here. CUCHK(cudaFree(t->weights.token_embedding_table)); #endif // free the RunState buffers free_run_state(&t->state); } // ---------------------------------------------------------------------------- // neural net blocks; the dynamics of the Transformer #ifdef USE_CUDA // Utility routine to divide a into ceiling of b parts int divUp(int a, int b) { return (a - 1) / b + 1; } const int num_threads_lrg = 1024; const int num_threads_med = 256; __global__ void rmsnorm_kernel(float* o, float* x, float* weight, int size, int elementsPerThread) { // parallel reduction of sum of squares via CUB float ss = 0.0f; for (int i = 0; i < elementsPerThread; i++) { int j = threadIdx.x + i * num_threads_lrg; if (j < size) ss += x[j] * x[j]; } using BlockReduce = cub::BlockReduce; __shared__ typename BlockReduce::TempStorage temp; ss = BlockReduce(temp).Sum(ss); // serialization point to calculate normalization factor __shared__ float shared_ss; if (threadIdx.x == 0) { ss /= size; ss += 1e-5f; ss = 1.0f / sqrtf(ss); shared_ss = ss; } __syncthreads(); ss = shared_ss; // normalize and scale for (int i = 0; i < elementsPerThread; i++) { int j = threadIdx.x + i * num_threads_lrg; if (j < size) { o[j] = weight[j] * (ss * x[j]); } } } void rmsnorm(float* o, float* x, float* weight, int size) { int elementsPerThread = divUp(size, num_threads_lrg); rmsnorm_kernel <<<1, num_threads_lrg >>> (o, x, weight, size, elementsPerThread); } #else void rmsnorm(float* o, float* x, float* weight, int size) { // calculate sum of squares float ss = 0.0f; for (int j = 0; j < size; j++) { ss += x[j] * x[j]; } ss /= size; ss += 1e-5f; ss = 1.0f / sqrtf(ss); // normalize and scale for (int j = 0; j < size; j++) { o[j] = weight[j] * (ss * x[j]); } } #endif #ifdef USE_CUDA __device__ void softmax_gpu(float* __restrict__ x, int size) { int tid = threadIdx.x; int step = blockDim.x; // find max value (for numerical stability) float max_val = tid < size ? x[tid] : 0; for (int i = tid + step; i < size; i += step) { if (x[i] > max_val) { max_val = x[i]; } } using BlockReduce = cub::BlockReduce; __shared__ typename BlockReduce::TempStorage temp; __shared__ float shared_val; max_val = BlockReduce(temp).Reduce(max_val, cub::Max()); if (threadIdx.x == 0) { shared_val = max_val; } __syncthreads(); max_val = shared_val; // exp and sum float sum = 0.0f; for (int i = tid; i < size; i += step) { x[i] = expf(x[i] - max_val); sum += x[i]; } sum = BlockReduce(temp).Sum(sum); if (threadIdx.x == 0) { shared_val = sum; } __syncthreads(); sum = shared_val; // normalize for (int i = tid; i < size; i += step) { x[i] /= sum; } } #endif void softmax(float* x, int size) { // find max value (for numerical stability) float max_val = x[0]; for (int i = 1; i < size; i++) { if (x[i] > max_val) { max_val = x[i]; } } // exp and sum float sum = 0.0f; for (int i = 0; i < size; i++) { x[i] = expf(x[i] - max_val); sum += x[i]; } // normalize for (int i = 0; i < size; i++) { x[i] /= sum; } } #ifdef USE_CUDA // Use cuBLAS for matmul to leverage this included, high-performance library. void matmul(cublasHandle_t handle, float* xout, float* x, float* w, int n, int d) { // W (d,n) @ x (n,) -> xout (d,) // W is stored in this order: (n=0,d=0), (n=1,d=0), (n=2,d=0), ... // so W is n x d in cublas terms & we'll need to transpose. // Sgemv does y = alpha * op(A) * x + beta * y (modifying y) // where op can transpose the matrix A // Translating to our local vars, that is // xout = 1.0*op(w)*x + 0.0*xout float alpha = 1.0f; float beta = 0.0f; // when this is 0, xout will not be used for input cublasSgemv(handle, CUBLAS_OP_T, n, d, &alpha, w, n, x, 1, &beta, xout, 1); } #else void matmul(float* xout, float* x, float* w, int n, int d) { // W (d,n) @ x (n,) -> xout (d,) // by far the most amount of time is spent inside this little function int i; #pragma omp parallel for private(i) for (i = 0; i < d; i++) { float val = 0.0f; for (int j = 0; j < n; j++) { val += w[i * n + j] * x[j]; } xout[i] = val; } } #endif // Additional neural net blocks (brought out from transformer function) #ifdef USE_CUDA __global__ void RoPe_rotation_kernel(int pos, float *sq, float *sk, int kv_dim, int head_size) { int i = threadIdx.x * 2 + blockIdx.x * head_size; int head_dim = i % head_size; float freq = 1.0f / powf(10000.0f, head_dim / (float)head_size); float val = pos * freq; float fcr = cosf(val); float fci = sinf(val); int rotn = i < kv_dim ? 2 : 1; // how many vectors? 2 = q & k, 1 = q only for (int v = 0; v < rotn; v++) { float* vec = v == 0 ? sq : sk; // the vector to rotate (query or key) float v0 = vec[i]; float v1 = vec[i+1]; vec[i] = v0 * fcr - v1 * fci; vec[i+1] = v0 * fci + v1 * fcr; } } void RoPe_rotation(int pos, RunState* s, int dim, int kv_dim, int head_size) { RoPe_rotation_kernel <<>> (pos, s->q, s->k, kv_dim, head_size); } #else void RoPe_rotation(int pos, RunState* s, int dim, int kv_dim, int head_size) { //s->q, s->k, freq_cis_real_row, freq_cis_imag_row, p->n_heads, head_size) { for (int i = 0; i < dim; i+=2) { int head_dim = i % head_size; float freq = 1.0f / powf(10000.0f, head_dim / (float)head_size); float val = pos * freq; float fcr = cosf(val); float fci = sinf(val); int rotn = i < kv_dim ? 2 : 1; // how many vectors? 2 = q & k, 1 = q only for (int v = 0; v < rotn; v++) { float* vec = v == 0 ? s->q : s->k; // the vector to rotate (query or key) float v0 = vec[i]; float v1 = vec[i+1]; vec[i] = v0 * fcr - v1 * fci; vec[i+1] = v0 * fci + v1 * fcr; } } } #endif #ifdef USE_CUDA // TODO refactor vs C code __global__ void multi_head_attention_kernel(int pos, int seq_len, float *sq, float *satt, float *sxb, float *key_cache, float *value_cache, int kv_dim, int kv_mul, int head_size, int loff) { int h = blockIdx.x; // get the query vector for this head float* q = sq + h * head_size; // attention scores for this head float* att = satt + h * seq_len; // iterate over all timesteps, including the current one // In CUDA, each thread does a small portion of the calc for (int t = threadIdx.x; t <= pos; t += blockDim.x) { // get the key vector for this head and at this timestep float* k = key_cache + loff + t * kv_dim + (h / kv_mul) * head_size; // calculate the attention score as the dot product of q and k float score = 0.0f; for (int i = 0; i < head_size; i++) { score += q[i] * k[i]; } score /= sqrtf(head_size); // save the score to the attention buffer att[t] = score; } // above was this threads portion of the iteration. wait for all threads to finish __syncthreads(); // softmax the scores to get attention weights, from 0..pos inclusively softmax_gpu(att, pos + 1); __syncthreads(); // weighted sum of the values, store back into xb // NOTE: by swapping the order of the for loops (vs. C) a simpler // version of the code accomplishes the same task and fits more // naturally with the CUDA way of subdividing the problem. float* xb = sxb + h * head_size; for (int i = threadIdx.x; i < head_size; i += blockDim.x) { float val = 0.0f; for (int t = 0; t <= pos; t++) { // get the value vector for this head and at this timestep float* v = value_cache + loff + t * kv_dim + (h / kv_mul) * head_size; // get the attention weight for this timestep float a = att[t]; val += a * v[i]; } xb[i] = val; } } void multi_head_attention(int pos, Config* p, RunState* s, int kv_dim, int kv_mul, int head_size, int loff) { multi_head_attention_kernel <<n_heads, num_threads_lrg>>> (pos, p->seq_len, s->q, s->att, s->xb, s->key_cache, s->value_cache, kv_dim, kv_mul, head_size, loff); } #else void multi_head_attention(int pos, Config* p, RunState* s, int kv_dim, int kv_mul, int head_size, int loff) { int h; #pragma omp parallel for private(h) for (h = 0; h < p->n_heads; h++) { // get the query vector for this head float* q = s->q + h * head_size; // attention scores for this head float* att = s->att + h * p->seq_len; // iterate over all timesteps, including the current one for (int t = 0; t <= pos; t++) { // get the key vector for this head and at this timestep float* k = s->key_cache + loff + t * kv_dim + (h / kv_mul) * head_size; // calculate the attention score as the dot product of q and k float score = 0.0f; for (int i = 0; i < head_size; i++) { score += q[i] * k[i]; } score /= sqrtf(head_size); // save the score to the attention buffer att[t] = score; } // softmax the scores to get attention weights, from 0..pos inclusively softmax(att, pos + 1); // weighted sum of the values, store back into xb float* xb = s->xb + h * head_size; memset(xb, 0, head_size * sizeof(float)); for (int t = 0; t <= pos; t++) { // get the value vector for this head and at this timestep float* v = s->value_cache + loff + t * kv_dim + (h / kv_mul) * head_size; // get the attention weight for this timestep float a = att[t]; // accumulate the weighted value into xb for (int i = 0; i < head_size; i++) { xb[i] += a * v[i]; } } } } #endif #ifdef USE_CUDA __global__ void f_silu_elementwise_mul_w3_kernel(float *shb, float *shb2, int hidden_dim) { int i = blockIdx.x * blockDim.x + threadIdx.x; if (i < hidden_dim) { float val = shb[i]; // silu(x)=x*σ(x), where σ(x) is the logistic sigmoid val *= (1.0f / (1.0f + expf(-val))); // elementwise multiply with w3(x) val *= shb2[i]; shb[i] = val; } } void f_silu_elementwise_mul_w3(RunState *s, int hidden_dim) { f_silu_elementwise_mul_w3_kernel<<>>(s->hb, s->hb2, hidden_dim); } #else void f_silu_elementwise_mul_w3(RunState *s, int hidden_dim) { for (int i = 0; i < hidden_dim; i++) { float val = s->hb[i]; // silu(x)=x*σ(x), where σ(x) is the logistic sigmoid val *= (1.0f / (1.0f + expf(-val))); // elementwise multiply with w3(x) val *= s->hb2[i]; s->hb[i] = val; } } #endif #ifdef USE_CUDA __global__ void accum_kernel(float* a, float* b, int size) { int i = blockIdx.x * blockDim.x + threadIdx.x; if (i < size) { a[i] += b[i]; } } void accum(float *a, float *b, int size) { accum_kernel<<>>(a,b,size); } #else void accum(float *a, float *b, int size) { for (int i = 0; i < size; i++) { a[i] += b[i]; } } #endif #ifdef USE_CUDA float* forward(Transformer* transformer, int token, int pos, cublasHandle_t handle) { #else float* forward(Transformer* transformer, int token, int pos) { #endif // a few convenience variables Config* p = &transformer->config; TransformerWeights* w = &transformer->weights; RunState* s = &transformer->state; float *x = s->x; int dim = p->dim; int kv_dim = (p->dim * p->n_kv_heads) / p->n_heads; int kv_mul = p->n_heads / p->n_kv_heads; // integer multiplier of the kv sharing in multiquery int hidden_dim = p->hidden_dim; int head_size = dim / p->n_heads; // copy the token embedding into x float* content_row = w->token_embedding_table + token * dim; #ifdef USE_CUDA CUCHK(cudaMemcpy(x, content_row, dim*sizeof(*x), cudaMemcpyDeviceToDevice)); #else memcpy(x, content_row, dim*sizeof(*x)); #endif // forward all the layers for(unsigned long long l = 0; l < p->n_layers; l++) { // attention rmsnorm rmsnorm(s->xb, x, w->rms_att_weight + l*dim, dim); // key and value point to the kv cache int loff = l * p->seq_len * kv_dim; // kv cache layer offset for convenience s->k = s->key_cache + loff + pos * kv_dim; s->v = s->value_cache + loff + pos * kv_dim; // qkv matmuls for this position #ifdef USE_CUDA matmul(handle, s->q, s->xb, w->wq + l*dim*dim, dim, dim); matmul(handle, s->k, s->xb, w->wk + l*dim*kv_dim, dim, kv_dim); matmul(handle, s->v, s->xb, w->wv + l*dim*kv_dim, dim, kv_dim); #else matmul(s->q, s->xb, w->wq + l*dim*dim, dim, dim); matmul(s->k, s->xb, w->wk + l*dim*kv_dim, dim, kv_dim); matmul(s->v, s->xb, w->wv + l*dim*kv_dim, dim, kv_dim); #endif // RoPE relative positional encoding: complex-valued rotate q and k in each head RoPe_rotation(pos, s, dim, kv_dim, head_size); // multihead attention. iterate over all heads multi_head_attention(pos, p, s, kv_dim, kv_mul, head_size, loff); // final matmul to get the output of the attention #ifdef USE_CUDA matmul(handle, s->xb2, s->xb, w->wo + l*dim*dim, dim, dim); #else matmul(s->xb2, s->xb, w->wo + l*dim*dim, dim, dim); #endif // residual connection back into x accum(x, s->xb2, dim); // ffn rmsnorm rmsnorm(s->xb, x, w->rms_ffn_weight + l*dim, dim); // Now for FFN in PyTorch we have: self.w2(F.silu(self.w1(x)) * self.w3(x)) // first calculate self.w1(x) and self.w3(x) #ifdef USE_CUDA matmul(handle, s->hb, s->xb, w->w1 + l*dim*hidden_dim, dim, hidden_dim); matmul(handle, s->hb2, s->xb, w->w3 + l*dim*hidden_dim, dim, hidden_dim); #else matmul(s->hb, s->xb, w->w1 + l*dim*hidden_dim, dim, hidden_dim); matmul(s->hb2, s->xb, w->w3 + l*dim*hidden_dim, dim, hidden_dim); #endif // SwiGLU non-linearity f_silu_elementwise_mul_w3(s, hidden_dim); // final matmul to get the output of the ffn #ifdef USE_CUDA matmul(handle, s->xb, s->hb, w->w2 + l*dim*hidden_dim, hidden_dim, dim); #else matmul(s->xb, s->hb, w->w2 + l*dim*hidden_dim, hidden_dim, dim); #endif // residual connection accum(x, s->xb, dim); } // final rmsnorm rmsnorm(x, x, w->rms_final_weight, dim); // classifier into logits #ifdef USE_CUDA matmul(handle, s->logits_gpu, x, w->wcls, p->dim, p->vocab_size); CUCHK(cudaMemcpy(s->logits, s->logits_gpu, p->vocab_size * sizeof(float), cudaMemcpyDeviceToHost)); #else matmul(s->logits, x, w->wcls, p->dim, p->vocab_size); #endif return s->logits; } // ---------------------------------------------------------------------------- // The Byte Pair Encoding (BPE) Tokenizer that translates strings <-> tokens typedef struct { char *str; int id; } TokenIndex; typedef struct { char** vocab; float* vocab_scores; TokenIndex *sorted_vocab; int vocab_size; unsigned int max_token_length; unsigned char byte_pieces[512]; // stores all single-byte strings } Tokenizer; int compare_tokens(const void *a, const void *b) { return strcmp(((TokenIndex*)a)->str, ((TokenIndex*)b)->str); } void build_tokenizer(Tokenizer* t, char* tokenizer_path, int vocab_size) { // i should have written the vocab_size into the tokenizer file... sigh t->vocab_size = vocab_size; // malloc space to hold the scores and the strings t->vocab = (char**)malloc(vocab_size * sizeof(char*)); t->vocab_scores = (float*)malloc(vocab_size * sizeof(float)); t->sorted_vocab = NULL; // initialized lazily for (int i = 0; i < 256; i++) { t->byte_pieces[i * 2] = (unsigned char)i; t->byte_pieces[i * 2 + 1] = '\0'; } // read in the file FILE *file = fopen(tokenizer_path, "rb"); if (!file) { fprintf(stderr, "couldn't load %s\n", tokenizer_path); exit(EXIT_FAILURE); } if (fread(&t->max_token_length, sizeof(int), 1, file) != 1) { fprintf(stderr, "failed read\n"); exit(EXIT_FAILURE); } int len; for (int i = 0; i < vocab_size; i++) { if (fread(t->vocab_scores + i, sizeof(float), 1, file) != 1) { fprintf(stderr, "failed read\n"); exit(EXIT_FAILURE);} if (fread(&len, sizeof(int), 1, file) != 1) { fprintf(stderr, "failed read\n"); exit(EXIT_FAILURE); } t->vocab[i] = (char *)malloc(len + 1); if (fread(t->vocab[i], len, 1, file) != 1) { fprintf(stderr, "failed read\n"); exit(EXIT_FAILURE); } t->vocab[i][len] = '\0'; // add the string terminating token } fclose(file); } void free_tokenizer(Tokenizer* t) { for (int i = 0; i < t->vocab_size; i++) { free(t->vocab[i]); } free(t->vocab); free(t->vocab_scores); free(t->sorted_vocab); } char* decode(Tokenizer* t, int prev_token, int token) { char *piece = t->vocab[token]; // following BOS (1) token, sentencepiece decoder strips any leading whitespace (see PR #89) if (prev_token == 1 && piece[0] == ' ') { piece++; } // careful, some tokens designate raw bytes, and look like e.g. '<0x01>' // parse this and convert and return the actual byte unsigned char byte_val; if (sscanf(piece, "<0x%02hhX>", &byte_val) == 1) { piece = (char*)t->byte_pieces + byte_val * 2; } return piece; } void safe_printf(char *piece) { // piece might be a raw byte token, and we only want to print printable chars or whitespace // because some of the other bytes can be various control codes, backspace, etc. if (piece == NULL) { return; } if (piece[0] == '\0') { return; } if (piece[1] == '\0') { unsigned char byte_val = piece[0]; if (!(isprint(byte_val) || isspace(byte_val))) { return; // bad byte, don't print it } } printf("%s", piece); } int str_lookup(char *str, TokenIndex *sorted_vocab, int vocab_size) { // efficiently find the perfect match for str in vocab, return its index or -1 if not found #if defined USE_CUDA && defined _WIN32 // CUDA on Windows was not capable of handling the syntax below TokenIndex tok; tok.str = str; #else TokenIndex tok = { .str = str }; // acts as the key to search for #endif TokenIndex *res = (TokenIndex *)bsearch(&tok, sorted_vocab, vocab_size, sizeof(TokenIndex), compare_tokens); return res != NULL ? res->id : -1; } void encode(Tokenizer* t, char *text, int8_t bos, int8_t eos, int *tokens, int *n_tokens) { // encode the string text (input) into an upper-bound preallocated tokens[] array // bos != 0 means prepend the BOS token (=1), eos != 0 means append the EOS token (=2) if (text == NULL) { fprintf(stderr, "cannot encode NULL text\n"); exit(EXIT_FAILURE); } if (t->sorted_vocab == NULL) { // lazily malloc and sort the vocabulary t->sorted_vocab = (TokenIndex *)malloc(t->vocab_size * sizeof(TokenIndex)); for (int i = 0; i < t->vocab_size; i++) { t->sorted_vocab[i].str = t->vocab[i]; t->sorted_vocab[i].id = i; } qsort(t->sorted_vocab, t->vocab_size, sizeof(TokenIndex), compare_tokens); } // create a temporary buffer that will store merge candidates of always two consecutive tokens // *2 for concat, +1 for null terminator +2 for UTF8 (in case max_token_length is 1) char* str_buffer = (char *)malloc((t->max_token_length*2 +1 +2) * sizeof(char)); size_t str_len = 0; // start at 0 tokens *n_tokens = 0; // add optional BOS (=1) token, if desired if (bos) tokens[(*n_tokens)++] = 1; // add_dummy_prefix is true by default // so prepend a dummy prefix token to the input string, but only if text != "" // TODO: pretty sure this isn't correct in the general case but I don't have the // energy to read more of the sentencepiece code to figure out what it's doing if (text[0] != '\0') { int dummy_prefix = str_lookup((char *)" ", t->sorted_vocab, t->vocab_size); tokens[(*n_tokens)++] = dummy_prefix; } // Okay UTF-8 time. This will get messy. Here is the reference from Wikipedia: // Code point ↔ UTF-8 conversion // First code point Last code point Byte 1 Byte 2 Byte 3 Byte 4 // U+0000 U+007F 0xxxxxxx // U+0080 U+07FF 110xxxxx 10xxxxxx // U+0800 U+FFFF 1110xxxx 10xxxxxx 10xxxxxx // U+10000 U+10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx // process the raw (UTF-8) byte sequence of the input string for (char *c = text; *c != '\0'; c++) { // reset buffer if the current byte is ASCII or a leading byte // 0xC0 is 11000000, so (*c & 0xC0) keeps the first 2 bits and zeros the rest // 0x80 is 10000000 // in UTF-8, all continuation bytes start with "10" in first two bits // so in English this is: "if this byte is not a continuation byte" if ((*c & 0xC0) != 0x80) { // this byte must be either a leading byte (11...) or an ASCII char (0x...) // => reset our location, as we're starting a new UTF-8 codepoint str_len = 0; } // append the current byte to the buffer str_buffer[str_len++] = *c; // ++ is post-increment, incremented after this line str_buffer[str_len] = '\0'; // while the next character is a continuation byte, continue appending // but if there are too many of them, just stop to avoid overruning str_buffer size. if ((*(c+1) & 0xC0) == 0x80 && str_len < 4) { continue; } // ok c+1 is not a continuation byte, so we've read in a full codepoint int id = str_lookup(str_buffer, t->sorted_vocab, t->vocab_size); if (id != -1) { // we found this codepoint in vocab, add it as a token tokens[(*n_tokens)++] = id; } else { // byte_fallback encoding: just encode each byte as a token // +3 is here because the first 3 vocab elements are , , // so the individual bytes only start at index 3 for (int i=0; i < str_len; i++) { tokens[(*n_tokens)++] = (unsigned char)str_buffer[i] + 3; } } str_len = 0; // protect against a sequence of stray UTF8 continuation bytes } // merge the best consecutive pair each iteration, according the scores in vocab_scores while (1) { float best_score = -1e10; int best_id = -1; int best_idx = -1; for (int i=0; i < (*n_tokens-1); i++) { // check if we can merge the pair (tokens[i], tokens[i+1]) sprintf(str_buffer, "%s%s", t->vocab[tokens[i]], t->vocab[tokens[i+1]]); int id = str_lookup(str_buffer, t->sorted_vocab, t->vocab_size); if (id != -1 && t->vocab_scores[id] > best_score) { // this merge pair exists in vocab! record its score and position best_score = t->vocab_scores[id]; best_id = id; best_idx = i; } } if (best_idx == -1) { break; // we couldn't find any more pairs to merge, so we're done } // merge the consecutive pair (best_idx, best_idx+1) into new token best_id tokens[best_idx] = best_id; // delete token at position best_idx+1, shift the entire sequence back 1 for (int i = best_idx+1; i < (*n_tokens-1); i++) { tokens[i] = tokens[i+1]; } (*n_tokens)--; // token length decreased } // add optional EOS (=2) token, if desired if (eos) tokens[(*n_tokens)++] = 2; free(str_buffer); } // ---------------------------------------------------------------------------- // The Sampler, which takes logits and returns a sampled token // sampling can be done in a few ways: greedy argmax, sampling, top-p sampling typedef struct { float prob; int index; } ProbIndex; // struct used when sorting probabilities during top-p sampling typedef struct { int vocab_size; ProbIndex* probindex; // buffer used in top-p sampling float temperature; float topp; unsigned long long rng_state; } Sampler; int sample_argmax(float* probabilities, int n) { // return the index that has the highest probability int max_i = 0; float max_p = probabilities[0]; for (int i = 1; i < n; i++) { if (probabilities[i] > max_p) { max_i = i; max_p = probabilities[i]; } } return max_i; } int sample_mult(float* probabilities, int n, float coin) { // sample index from probabilities (they must sum to 1!) // coin is a random number in [0, 1), usually from random_f32() float cdf = 0.0f; for (int i = 0; i < n; i++) { cdf += probabilities[i]; if (coin < cdf) { return i; } } return n - 1; // in case of rounding errors } int compare(const void* a, const void* b) { ProbIndex* a_ = (ProbIndex*) a; ProbIndex* b_ = (ProbIndex*) b; if (a_->prob > b_->prob) return -1; if (a_->prob < b_->prob) return 1; return 0; } int sample_topp(float* probabilities, int n, float topp, ProbIndex* probindex, float coin) { // top-p sampling (or "nucleus sampling") samples from the smallest set of // tokens that exceed probability topp. This way we never sample tokens that // have very low probabilities and are less likely to go "off the rails". // coin is a random number in [0, 1), usually from random_f32() int n0 = 0; // quicksort indices in descending order of probabilities // values smaller than (1 - topp) / (n - 1) cannot be part of the result // so for efficiency we crop these out as candidates before sorting const float cutoff = (1.0f - topp) / (n - 1); for (int i = 0; i < n; i++) { if (probabilities[i] >= cutoff) { probindex[n0].index = i; probindex[n0].prob = probabilities[i]; n0++; } } qsort(probindex, n0, sizeof(ProbIndex), compare); // truncate the list where cumulative probability exceeds topp float cumulative_prob = 0.0f; int last_idx = n0 - 1; // in case of rounding errors consider all elements for (int i = 0; i < n0; i++) { cumulative_prob += probindex[i].prob; if (cumulative_prob > topp) { last_idx = i; break; // we've exceeded topp by including last_idx } } // sample from the truncated list float r = coin * cumulative_prob; float cdf = 0.0f; for (int i = 0; i <= last_idx; i++) { cdf += probindex[i].prob; if (r < cdf) { return probindex[i].index; } } return probindex[last_idx].index; // in case of rounding errors } void build_sampler(Sampler* sampler, int vocab_size, float temperature, float topp, unsigned long long rng_seed) { sampler->vocab_size = vocab_size; sampler->temperature = temperature; sampler->topp = topp; sampler->rng_state = rng_seed; // buffer only used with nucleus sampling; may not need but it's ~small sampler->probindex = (ProbIndex *)malloc(sampler->vocab_size * sizeof(ProbIndex)); } void free_sampler(Sampler* sampler) { free(sampler->probindex); sampler->probindex = NULL; } unsigned int random_u32(unsigned long long *state) { // xorshift rng: https://en.wikipedia.org/wiki/Xorshift#xorshift.2A *state ^= *state >> 12; *state ^= *state << 25; *state ^= *state >> 27; return (*state * 0x2545F4914F6CDD1Dull) >> 32; } float random_f32(unsigned long long *state) { // random float32 in [0,1) return (random_u32(state) >> 8) / 16777216.0f; } int sample(Sampler* sampler, float* logits) { // sample the token given the logits and some hyperparameters int next; if (sampler->temperature == 0.0f) { // greedy argmax sampling: take the token with the highest probability next = sample_argmax(logits, sampler->vocab_size); } else { // apply the temperature to the logits for (int q=0; qvocab_size; q++) { logits[q] /= sampler->temperature; } // apply softmax to the logits to get the probabilities for next token softmax(logits, sampler->vocab_size); // flip a (float) coin (this is our source of entropy for sampling) float coin = random_f32(&sampler->rng_state); // we sample from this distribution to get the next token if (sampler->topp <= 0 || sampler->topp >= 1) { // simply sample from the predicted probability distribution next = sample_mult(logits, sampler->vocab_size, coin); } else { // top-p (nucleus) sampling, clamping the least likely tokens to zero next = sample_topp(logits, sampler->vocab_size, sampler->topp, sampler->probindex, coin); } } return next; } // ---------------------------------------------------------------------------- // utilities: time long time_in_ms() { // return time in milliseconds, for benchmarking the model speed struct timespec time; clock_gettime(CLOCK_REALTIME, &time); return time.tv_sec * 1000 + time.tv_nsec / 1000000; } // ---------------------------------------------------------------------------- // generation loop // void generate(Transformer *transformer, Tokenizer *tokenizer, Sampler *sampler, char *prompt, int steps) { // char *empty_prompt = (char *)""; // if (prompt == NULL) { prompt = empty_prompt; } // // encode the (string) prompt into tokens sequence // int num_prompt_tokens = 0; // int* prompt_tokens = (int*)malloc((strlen(prompt)+3) * sizeof(int)); // +3 for '\0', ?BOS, ?EOS // encode(tokenizer, prompt, 1, 0, prompt_tokens, &num_prompt_tokens); // if (num_prompt_tokens < 1) { // fprintf(stderr, "something is wrong, expected at least 1 prompt token\n"); // exit(EXIT_FAILURE); // } // // start the main loop // long start = 0; // used to time our code, only initialized after first iteration // int next; // will store the next token in the sequence // int token = prompt_tokens[0]; // kick off with the first token in the prompt // int pos = 0; // position in the sequence // while (pos < steps) { // // forward the transformer to get logits for the next token // float* logits = forward(transformer, token, pos); // // advance the state machine // if (pos < num_prompt_tokens - 1) { // // if we are still processing the input prompt, force the next prompt token // next = prompt_tokens[pos + 1]; // } else { // // otherwise sample the next token from the logits // next = sample(sampler, logits); // } // pos++; // // data-dependent terminating condition: the BOS (=1) token delimits sequences // if (next == 1) { break; } // // print the token as string, decode it with the Tokenizer object // char* piece = decode(tokenizer, token, next); // safe_printf(piece); // same as printf("%s", piece), but skips "unsafe" bytes // fflush(stdout); // token = next; // // init the timer here because the first iteration can be slower // if (start == 0) { start = time_in_ms(); } // } // printf("\n"); // // report achieved tok/s (pos-1 because the timer starts after first iteration) // if (pos > 1) { // long end = time_in_ms(); // fprintf(stderr, "achieved tok/s: %f\n", (pos-1) / (double)(end-start)*1000); // } // free(prompt_tokens); // } // void read_stdin(const char* guide, char* buffer, size_t bufsize) { // // read a line from stdin, up to but not including \n // printf("%s", guide); // if (fgets(buffer, bufsize, stdin) != NULL) { // size_t len = strlen(buffer); // if (len > 0 && buffer[len - 1] == '\n') { // buffer[len - 1] = '\0'; // strip newline // } // } // } // // ---------------------------------------------------------------------------- // // chat loop // // I manually inspected the tokens for a few chat conversations compared to // // python reference and that seemed ok, but this was not thoroughly tested and // // is not safely implemented, it's more a proof of concept atm. // void chat(Transformer *transformer, Tokenizer *tokenizer, Sampler *sampler, // char *cli_user_prompt, char *cli_system_prompt, int steps) { // // buffers for reading the system prompt and user prompt from stdin // // you'll notice they are soomewhat haphazardly and unsafely set atm // char system_prompt[512]; // char user_prompt[512]; // char rendered_prompt[1152]; // int num_prompt_tokens = 0; // int* prompt_tokens = (int*)malloc(1152 * sizeof(int)); // int user_idx; // // start the main loop // int8_t user_turn = 1; // user starts // int next; // will store the next token in the sequence // int token; // stores the current token to feed into the transformer // int prev_token; // int pos = 0; // position in the sequence // while (pos < steps) { // // when it is the user's turn to contribute tokens to the dialog... // if (user_turn) { // // get the (optional) system prompt at position 0 // if (pos == 0) { // // at position 0, the user can also contribute a system prompt // if (cli_system_prompt == NULL) { // // system prompt was not passed in, attempt to get it from stdin // read_stdin("Enter system prompt (optional): ", system_prompt, sizeof(system_prompt)); // } else { // // system prompt was passed in, use it // strcpy(system_prompt, cli_system_prompt); // } // } // // get the user prompt // if (pos == 0 && cli_user_prompt != NULL) { // // user prompt for position 0 was passed in, use it // strcpy(user_prompt, cli_user_prompt); // } else { // // otherwise get user prompt from stdin // read_stdin("User: ", user_prompt, sizeof(user_prompt)); // } // // render user/system prompts into the Llama 2 Chat schema // if (pos == 0 && system_prompt[0] != '\0') { // char system_template[] = "[INST] <>\n%s\n<>\n\n%s [/INST]"; // sprintf(rendered_prompt, system_template, system_prompt, user_prompt); // } else { // char user_template[] = "[INST] %s [/INST]"; // sprintf(rendered_prompt, user_template, user_prompt); // } // // encode the rendered prompt into tokens // encode(tokenizer, rendered_prompt, 1, 0, prompt_tokens, &num_prompt_tokens); // user_idx = 0; // reset the user index // user_turn = 0; // printf("Assistant: "); // } // // determine the token to pass into the transformer next // if (user_idx < num_prompt_tokens) { // // if we are still processing the input prompt, force the next prompt token // token = prompt_tokens[user_idx++]; // } else { // // otherwise use the next token sampled from previous turn // token = next; // } // // EOS (=2) token ends the Assistant turn // if (token == 2) { user_turn = 1; } // // forward the transformer to get logits for the next token // float* logits = forward(transformer, token, pos); // next = sample(sampler, logits); // pos++; // if (user_idx >= num_prompt_tokens && next != 2) { // // the Assistant is responding, so print its output // char* piece = decode(tokenizer, token, next); // safe_printf(piece); // same as printf("%s", piece), but skips "unsafe" bytes // fflush(stdout); // } // if (next == 2) { printf("\n"); } // } // printf("\n"); // free(prompt_tokens); // } typedef struct { Transformer transformer; Tokenizer tokenizer; Sampler sampler; int *output; // buffer to store the output tokens(max_tokens + 1) int output_idx; // current index in the output buffer(0 ... max_tokens - 1) int gen_idx; // generated tokens(0 ... max_tokens) int finished; #ifdef USE_CUDA cublasHandle_t g_cublas_handle; #endif } llama2_ctx; void *llama2_init(char *model_path, char *tokenizer_path) { llama2_ctx *ctx = (llama2_ctx *)malloc(sizeof(llama2_ctx)); build_transformer(&ctx->transformer, model_path); build_tokenizer(&ctx->tokenizer, tokenizer_path, ctx->transformer.config.vocab_size); ctx->output = NULL; #ifdef USE_CUDA cublasStatus_t stat = cublasCreate(&ctx->g_cublas_handle); // FIXME cublasDestroy if (stat != CUBLAS_STATUS_SUCCESS) { printf ("CUBLAS initialization failed\n"); exit(EXIT_FAILURE); } #endif return ctx; } void llama2_free(void *ctx) { llama2_ctx *c = (llama2_ctx *)ctx; free_transformer(&c->transformer); free_tokenizer(&c->tokenizer); if (c->sampler.probindex != NULL) free_sampler(&c->sampler); #ifdef USE_CUDA cublasStatus_t stat = cublasDestroy(c->g_cublas_handle); if (stat != CUBLAS_STATUS_SUCCESS) { printf ("CUBLAS destroy failed\n"); exit(EXIT_FAILURE); } #endif if (c->output != NULL) free(c->output); } void llama2_generate_loop(llama2_ctx *ctx, int *prompt_tokens, int num_prompt_tokens, int steps, int *output_tokens) { // printf("generate loop started\n"); // start the main loop // long start = 0; // used to time our code, only initialized after first iteration int next; // will store the next token in the sequence int token = prompt_tokens[0]; // kick off with the first token in the prompt int pos = 0; // position in the sequence while (pos < steps) { // forward the transformer to get logits for the next token #ifdef USE_CUDA float* logits = forward(&ctx->transformer, token, pos, ctx->g_cublas_handle); #else float* logits = forward(&ctx->transformer, token, pos); #endif // advance the state machine if (pos < num_prompt_tokens - 1) { // if we are still processing the input prompt, force the next prompt token next = prompt_tokens[pos + 1]; } else { // otherwise sample the next token from the logits next = sample(&ctx->sampler, logits); } // printf("current gen idx: %d, %d\n", ctx->gen_idx, next); if (pos == num_prompt_tokens - 1) output_tokens[ctx->gen_idx] = token; if (pos >= num_prompt_tokens - 1) output_tokens[ctx->gen_idx++ + 1] = next; pos++; token = next; // EOS (=2) token ends the Assistant turn if (next == 2) break; } // report achieved tok/s (pos-1 because the timer starts after first iteration) // if (pos > 1) { // long end = time_in_ms(); // fprintf(stderr, "achieved tok/s: %f\n", (pos-1) / (double)(end-start)*1000); // } ctx->finished = 1; free(prompt_tokens); free_sampler(&ctx->sampler); // printf("generate loop finished\n"); } int llama2_generate(void *ctx, char *prompt, int steps, float temperature, float topp, int seed) { llama2_ctx *c = (llama2_ctx *)ctx; build_sampler(&c->sampler, c->transformer.config.vocab_size, temperature, topp, seed); char *empty_prompt = (char *)""; if (prompt == NULL) { prompt = empty_prompt; } // encode the (string) prompt into tokens sequence int num_prompt_tokens = 0; int* prompt_tokens = (int*)malloc((strlen(prompt)+3) * sizeof(int)); // +3 for '\0', ?BOS, ?EOS encode(&c->tokenizer, prompt, 1, 0, prompt_tokens, &num_prompt_tokens); if (num_prompt_tokens < 1) { fprintf(stderr, "something is wrong, expected at least 1 prompt token\n"); return 1; } if (num_prompt_tokens >= steps) { fprintf(stderr, "prompt tokens exceeds max token length\n"); return 1; } c->output = (int *)malloc((steps + 1) * sizeof(int)); c->gen_idx = 0; c->output_idx = 0; c->finished = 0; std::thread t(llama2_generate_loop, c, prompt_tokens, num_prompt_tokens, steps, c->output); t.detach(); return 0; } char *llama2_get_last(void *ctx) { llama2_ctx *c = (llama2_ctx *)ctx; assert(c->output != NULL); // shouldn't be called again after finished while(!c->finished && c->output_idx >= c->gen_idx) { // printf("current idx: %d, %d\n", c->output_idx, c->gen_idx); usleep(100000); } // wait for next token if (c->finished && c->output_idx >= c->gen_idx) { free(c->output); c->output = NULL; return NULL; } // printf("current idx: %d, %d, finished:%d\n", c->output_idx, c->gen_idx, c->finished); char *piece = decode(&c->tokenizer, c->output[c->output_idx], c->output[c->output_idx + 1]); c->output_idx++; return piece; } void llama2_tokenize(void *ctx, char *text, int8_t bos, int8_t eos, int *tokens, int *n_tokens) { llama2_ctx *c = (llama2_ctx *)ctx; encode(&c->tokenizer, text, bos, eos, tokens, n_tokens); }