Spaces:
Running
on
Zero
Running
on
Zero
File size: 88,886 Bytes
708238a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 |
from comfy.ldm.modules import attention as comfy_attention
import logging
import comfy.model_patcher
import comfy.utils
import comfy.sd
import torch
import folder_paths
import comfy.model_management as mm
from comfy.cli_args import args
from typing import Optional, Tuple
sageattn_modes = ["disabled", "auto", "sageattn_qk_int8_pv_fp16_cuda", "sageattn_qk_int8_pv_fp16_triton", "sageattn_qk_int8_pv_fp8_cuda", "sageattn_qk_int8_pv_fp8_cuda++"]
_initialized = False
_original_functions = {}
if not _initialized:
_original_functions["orig_attention"] = comfy_attention.optimized_attention
_original_functions["original_patch_model"] = comfy.model_patcher.ModelPatcher.patch_model
_original_functions["original_load_lora_for_models"] = comfy.sd.load_lora_for_models
try:
_original_functions["original_qwen_forward"] = comfy.ldm.qwen_image.model.Attention.forward
except:
pass
_initialized = True
class BaseLoaderKJ:
original_linear = None
cublas_patched = False
@torch.compiler.disable()
def _patch_modules(self, patch_cublaslinear, sage_attention):
try:
from comfy.ldm.qwen_image.model import apply_rotary_emb
def qwen_sage_forward(
self,
hidden_states: torch.FloatTensor, # Image stream
encoder_hidden_states: torch.FloatTensor = None, # Text stream
encoder_hidden_states_mask: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
seq_txt = encoder_hidden_states.shape[1]
img_query = self.to_q(hidden_states).unflatten(-1, (self.heads, -1))
img_key = self.to_k(hidden_states).unflatten(-1, (self.heads, -1))
img_value = self.to_v(hidden_states).unflatten(-1, (self.heads, -1))
txt_query = self.add_q_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
txt_key = self.add_k_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
txt_value = self.add_v_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
img_query = self.norm_q(img_query)
img_key = self.norm_k(img_key)
txt_query = self.norm_added_q(txt_query)
txt_key = self.norm_added_k(txt_key)
joint_query = torch.cat([txt_query, img_query], dim=1)
joint_key = torch.cat([txt_key, img_key], dim=1)
joint_value = torch.cat([txt_value, img_value], dim=1)
joint_query = apply_rotary_emb(joint_query, image_rotary_emb)
joint_key = apply_rotary_emb(joint_key, image_rotary_emb)
joint_query = joint_query.flatten(start_dim=2)
joint_key = joint_key.flatten(start_dim=2)
joint_value = joint_value.flatten(start_dim=2)
joint_hidden_states = attention_sage(joint_query, joint_key, joint_value, self.heads, attention_mask)
txt_attn_output = joint_hidden_states[:, :seq_txt, :]
img_attn_output = joint_hidden_states[:, seq_txt:, :]
img_attn_output = self.to_out[0](img_attn_output)
img_attn_output = self.to_out[1](img_attn_output)
txt_attn_output = self.to_add_out(txt_attn_output)
return img_attn_output, txt_attn_output
except:
print("Failed to patch QwenImage attention, Comfy not updated, skipping")
from comfy.ops import disable_weight_init, CastWeightBiasOp, cast_bias_weight
if sage_attention != "disabled":
print("Patching comfy attention to use sageattn")
from sageattention import sageattn
def set_sage_func(sage_attention):
if sage_attention == "auto":
def func(q, k, v, is_causal=False, attn_mask=None, tensor_layout="NHD"):
return sageattn(q, k, v, is_causal=is_causal, attn_mask=attn_mask, tensor_layout=tensor_layout)
return func
elif sage_attention == "sageattn_qk_int8_pv_fp16_cuda":
from sageattention import sageattn_qk_int8_pv_fp16_cuda
def func(q, k, v, is_causal=False, attn_mask=None, tensor_layout="NHD"):
return sageattn_qk_int8_pv_fp16_cuda(q, k, v, is_causal=is_causal, attn_mask=attn_mask, pv_accum_dtype="fp32", tensor_layout=tensor_layout)
return func
elif sage_attention == "sageattn_qk_int8_pv_fp16_triton":
from sageattention import sageattn_qk_int8_pv_fp16_triton
def func(q, k, v, is_causal=False, attn_mask=None, tensor_layout="NHD"):
return sageattn_qk_int8_pv_fp16_triton(q, k, v, is_causal=is_causal, attn_mask=attn_mask, tensor_layout=tensor_layout)
return func
elif sage_attention == "sageattn_qk_int8_pv_fp8_cuda":
from sageattention import sageattn_qk_int8_pv_fp8_cuda
def func(q, k, v, is_causal=False, attn_mask=None, tensor_layout="NHD"):
return sageattn_qk_int8_pv_fp8_cuda(q, k, v, is_causal=is_causal, attn_mask=attn_mask, pv_accum_dtype="fp32+fp32", tensor_layout=tensor_layout)
return func
elif sage_attention == "sageattn_qk_int8_pv_fp8_cuda++":
from sageattention import sageattn_qk_int8_pv_fp8_cuda
def func(q, k, v, is_causal=False, attn_mask=None, tensor_layout="NHD"):
return sageattn_qk_int8_pv_fp8_cuda(q, k, v, is_causal=is_causal, attn_mask=attn_mask, pv_accum_dtype="fp32+fp16", tensor_layout=tensor_layout)
return func
sage_func = set_sage_func(sage_attention)
@torch.compiler.disable()
def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
if skip_reshape:
b, _, _, dim_head = q.shape
tensor_layout="HND"
else:
b, _, dim_head = q.shape
dim_head //= heads
q, k, v = map(
lambda t: t.view(b, -1, heads, dim_head),
(q, k, v),
)
tensor_layout="NHD"
if mask is not None:
# add a batch dimension if there isn't already one
if mask.ndim == 2:
mask = mask.unsqueeze(0)
# add a heads dimension if there isn't already one
if mask.ndim == 3:
mask = mask.unsqueeze(1)
out = sage_func(q, k, v, attn_mask=mask, is_causal=False, tensor_layout=tensor_layout)
if tensor_layout == "HND":
if not skip_output_reshape:
out = (
out.transpose(1, 2).reshape(b, -1, heads * dim_head)
)
else:
if skip_output_reshape:
out = out.transpose(1, 2)
else:
out = out.reshape(b, -1, heads * dim_head)
return out
comfy_attention.optimized_attention = attention_sage
comfy.ldm.hunyuan_video.model.optimized_attention = attention_sage
comfy.ldm.flux.math.optimized_attention = attention_sage
comfy.ldm.genmo.joint_model.asymm_models_joint.optimized_attention = attention_sage
comfy.ldm.cosmos.blocks.optimized_attention = attention_sage
comfy.ldm.wan.model.optimized_attention = attention_sage
try:
comfy.ldm.qwen_image.model.Attention.forward = qwen_sage_forward
except:
pass
else:
print("Restoring initial comfy attention")
comfy_attention.optimized_attention = _original_functions.get("orig_attention")
comfy.ldm.hunyuan_video.model.optimized_attention = _original_functions.get("orig_attention")
comfy.ldm.flux.math.optimized_attention = _original_functions.get("orig_attention")
comfy.ldm.genmo.joint_model.asymm_models_joint.optimized_attention = _original_functions.get("orig_attention")
comfy.ldm.cosmos.blocks.optimized_attention = _original_functions.get("orig_attention")
comfy.ldm.wan.model.optimized_attention = _original_functions.get("orig_attention")
try:
comfy.ldm.qwen_image.model.Attention.forward = _original_functions.get("original_qwen_forward")
except:
pass
if patch_cublaslinear:
if not BaseLoaderKJ.cublas_patched:
BaseLoaderKJ.original_linear = disable_weight_init.Linear
try:
from cublas_ops import CublasLinear
except ImportError:
raise Exception("Can't import 'torch-cublas-hgemm', install it from here https://github.com/aredden/torch-cublas-hgemm")
class PatchedLinear(CublasLinear, CastWeightBiasOp):
def reset_parameters(self):
pass
def forward_comfy_cast_weights(self, input):
weight, bias = cast_bias_weight(self, input)
return torch.nn.functional.linear(input, weight, bias)
def forward(self, *args, **kwargs):
if self.comfy_cast_weights:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
disable_weight_init.Linear = PatchedLinear
BaseLoaderKJ.cublas_patched = True
else:
if BaseLoaderKJ.cublas_patched:
disable_weight_init.Linear = BaseLoaderKJ.original_linear
BaseLoaderKJ.cublas_patched = False
from comfy.patcher_extension import CallbacksMP
class PathchSageAttentionKJ(BaseLoaderKJ):
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"sage_attention": (sageattn_modes, {"default": False, "tooltip": "Global patch comfy attention to use sageattn, once patched to revert back to normal you would need to run this node again with disabled option."}),
}}
RETURN_TYPES = ("MODEL", )
FUNCTION = "patch"
DESCRIPTION = "Experimental node for patching attention mode. This doesn't use the model patching system and thus can't be disabled without running the node again with 'disabled' option."
EXPERIMENTAL = True
CATEGORY = "KJNodes/experimental"
def patch(self, model, sage_attention):
model_clone = model.clone()
@torch.compiler.disable()
def patch_attention_enable(model):
self._patch_modules(False, sage_attention)
@torch.compiler.disable()
def patch_attention_disable(model):
self._patch_modules(False, "disabled")
model_clone.add_callback(CallbacksMP.ON_PRE_RUN, patch_attention_enable)
model_clone.add_callback(CallbacksMP.ON_CLEANUP, patch_attention_disable)
return model_clone,
class CheckpointLoaderKJ(BaseLoaderKJ):
@classmethod
def INPUT_TYPES(s):
return {"required": {
"ckpt_name": (folder_paths.get_filename_list("checkpoints"), {"tooltip": "The name of the checkpoint (model) to load."}),
"weight_dtype": (["default", "fp8_e4m3fn", "fp8_e4m3fn_fast", "fp8_e5m2", "fp16", "bf16", "fp32"],),
"compute_dtype": (["default", "fp16", "bf16", "fp32"], {"default": "default", "tooltip": "The compute dtype to use for the model."}),
"patch_cublaslinear": ("BOOLEAN", {"default": False, "tooltip": "Enable or disable the patching, won't take effect on already loaded models!"}),
"sage_attention": (sageattn_modes, {"default": False, "tooltip": "Patch comfy attention to use sageattn."}),
"enable_fp16_accumulation": ("BOOLEAN", {"default": False, "tooltip": "Enable torch.backends.cuda.matmul.allow_fp16_accumulation, requires pytorch 2.7.0 nightly."}),
}}
RETURN_TYPES = ("MODEL", "CLIP", "VAE")
FUNCTION = "patch"
DESCRIPTION = "Experimental node for patching torch.nn.Linear with CublasLinear."
EXPERIMENTAL = True
CATEGORY = "KJNodes/experimental"
def patch(self, ckpt_name, weight_dtype, compute_dtype, patch_cublaslinear, sage_attention, enable_fp16_accumulation):
DTYPE_MAP = {
"fp8_e4m3fn": torch.float8_e4m3fn,
"fp8_e5m2": torch.float8_e5m2,
"fp16": torch.float16,
"bf16": torch.bfloat16,
"fp32": torch.float32
}
model_options = {}
if dtype := DTYPE_MAP.get(weight_dtype):
model_options["dtype"] = dtype
print(f"Setting {ckpt_name} weight dtype to {dtype}")
if weight_dtype == "fp8_e4m3fn_fast":
model_options["dtype"] = torch.float8_e4m3fn
model_options["fp8_optimizations"] = True
ckpt_path = folder_paths.get_full_path_or_raise("checkpoints", ckpt_name)
sd, metadata = comfy.utils.load_torch_file(ckpt_path, return_metadata=True)
model, clip, vae = self.load_state_dict_guess_config(
sd,
output_vae=True,
output_clip=True,
embedding_directory=folder_paths.get_folder_paths("embeddings"),
metadata=metadata,
model_options=model_options)
if dtype := DTYPE_MAP.get(compute_dtype):
model.set_model_compute_dtype(dtype)
model.force_cast_weights = False
print(f"Setting {ckpt_name} compute dtype to {dtype}")
if enable_fp16_accumulation:
if hasattr(torch.backends.cuda.matmul, "allow_fp16_accumulation"):
torch.backends.cuda.matmul.allow_fp16_accumulation = True
else:
raise RuntimeError("Failed to set fp16 accumulation, this requires pytorch 2.7.0 nightly currently")
else:
if hasattr(torch.backends.cuda.matmul, "allow_fp16_accumulation"):
torch.backends.cuda.matmul.allow_fp16_accumulation = False
def patch_attention(model):
self._patch_modules(patch_cublaslinear, sage_attention)
model.add_callback(CallbacksMP.ON_PRE_RUN,patch_attention)
return model, clip, vae
def load_state_dict_guess_config(self, sd, output_vae=True, output_clip=True, embedding_directory=None, output_model=True, model_options={}, te_model_options={}, metadata=None):
from comfy.sd import load_diffusion_model_state_dict, model_detection, VAE, CLIP
clip = None
vae = None
model = None
model_patcher = None
diffusion_model_prefix = model_detection.unet_prefix_from_state_dict(sd)
parameters = comfy.utils.calculate_parameters(sd, diffusion_model_prefix)
weight_dtype = comfy.utils.weight_dtype(sd, diffusion_model_prefix)
load_device = mm.get_torch_device()
model_config = model_detection.model_config_from_unet(sd, diffusion_model_prefix, metadata=metadata)
if model_config is None:
logging.warning("Warning, This is not a checkpoint file, trying to load it as a diffusion model only.")
diffusion_model = load_diffusion_model_state_dict(sd, model_options={})
if diffusion_model is None:
return None
return (diffusion_model, None, VAE(sd={}), None) # The VAE object is there to throw an exception if it's actually used'
unet_weight_dtype = list(model_config.supported_inference_dtypes)
if model_config.scaled_fp8 is not None:
weight_dtype = None
model_config.custom_operations = model_options.get("custom_operations", None)
unet_dtype = model_options.get("dtype", model_options.get("weight_dtype", None))
if unet_dtype is None:
unet_dtype = mm.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype, weight_dtype=weight_dtype)
manual_cast_dtype = mm.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
if output_model:
inital_load_device = mm.unet_inital_load_device(parameters, unet_dtype)
model = model_config.get_model(sd, diffusion_model_prefix, device=inital_load_device)
model.load_model_weights(sd, diffusion_model_prefix)
if output_vae:
vae_sd = comfy.utils.state_dict_prefix_replace(sd, {k: "" for k in model_config.vae_key_prefix}, filter_keys=True)
vae_sd = model_config.process_vae_state_dict(vae_sd)
vae = VAE(sd=vae_sd, metadata=metadata)
if output_clip:
clip_target = model_config.clip_target(state_dict=sd)
if clip_target is not None:
clip_sd = model_config.process_clip_state_dict(sd)
if len(clip_sd) > 0:
parameters = comfy.utils.calculate_parameters(clip_sd)
clip = CLIP(clip_target, embedding_directory=embedding_directory, tokenizer_data=clip_sd, parameters=parameters, model_options=te_model_options)
m, u = clip.load_sd(clip_sd, full_model=True)
if len(m) > 0:
m_filter = list(filter(lambda a: ".logit_scale" not in a and ".transformer.text_projection.weight" not in a, m))
if len(m_filter) > 0:
logging.warning("clip missing: {}".format(m))
else:
logging.debug("clip missing: {}".format(m))
if len(u) > 0:
logging.debug("clip unexpected {}:".format(u))
else:
logging.warning("no CLIP/text encoder weights in checkpoint, the text encoder model will not be loaded.")
left_over = sd.keys()
if len(left_over) > 0:
logging.debug("left over keys: {}".format(left_over))
if output_model:
model_patcher = comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=mm.unet_offload_device())
if inital_load_device != torch.device("cpu"):
logging.info("loaded diffusion model directly to GPU")
mm.load_models_gpu([model_patcher], force_full_load=True)
return (model_patcher, clip, vae)
class DiffusionModelSelector():
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model_name": (folder_paths.get_filename_list("diffusion_models"), {"tooltip": "The name of the checkpoint (model) to load."}),
},
}
RETURN_TYPES = ("STRING",)
RETURN_NAMES = ("model_path",)
FUNCTION = "get_path"
DESCRIPTION = "Returns the path to the model as a string."
EXPERIMENTAL = True
CATEGORY = "KJNodes/experimental"
def get_path(self, model_name):
model_path = folder_paths.get_full_path_or_raise("diffusion_models", model_name)
return (model_path,)
class DiffusionModelLoaderKJ(BaseLoaderKJ):
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model_name": (folder_paths.get_filename_list("diffusion_models"), {"tooltip": "The name of the checkpoint (model) to load."}),
"weight_dtype": (["default", "fp8_e4m3fn", "fp8_e4m3fn_fast", "fp8_e5m2", "fp16", "bf16", "fp32"],),
"compute_dtype": (["default", "fp16", "bf16", "fp32"], {"default": "default", "tooltip": "The compute dtype to use for the model."}),
"patch_cublaslinear": ("BOOLEAN", {"default": False, "tooltip": "Enable or disable the patching, won't take effect on already loaded models!"}),
"sage_attention": (sageattn_modes, {"default": False, "tooltip": "Patch comfy attention to use sageattn."}),
"enable_fp16_accumulation": ("BOOLEAN", {"default": False, "tooltip": "Enable torch.backends.cuda.matmul.allow_fp16_accumulation, requires pytorch 2.7.0 nightly."}),
},
"optional": {
"extra_state_dict": ("STRING", {"forceInput": True, "tooltip": "The full path to an additional state dict to load, this will be merged with the main state dict. Useful for example to add VACE module to a WanVideoModel. You can use DiffusionModelSelector to easily get the path."}),
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch_and_load"
DESCRIPTION = "Node for patching torch.nn.Linear with CublasLinear."
EXPERIMENTAL = True
CATEGORY = "KJNodes/experimental"
def patch_and_load(self, model_name, weight_dtype, compute_dtype, patch_cublaslinear, sage_attention, enable_fp16_accumulation, extra_state_dict=None):
DTYPE_MAP = {
"fp8_e4m3fn": torch.float8_e4m3fn,
"fp8_e5m2": torch.float8_e5m2,
"fp16": torch.float16,
"bf16": torch.bfloat16,
"fp32": torch.float32
}
model_options = {}
if dtype := DTYPE_MAP.get(weight_dtype):
model_options["dtype"] = dtype
print(f"Setting {model_name} weight dtype to {dtype}")
if weight_dtype == "fp8_e4m3fn_fast":
model_options["dtype"] = torch.float8_e4m3fn
model_options["fp8_optimizations"] = True
if enable_fp16_accumulation:
if hasattr(torch.backends.cuda.matmul, "allow_fp16_accumulation"):
torch.backends.cuda.matmul.allow_fp16_accumulation = True
else:
raise RuntimeError("Failed to set fp16 accumulation, this requires pytorch 2.7.0 nightly currently")
else:
if hasattr(torch.backends.cuda.matmul, "allow_fp16_accumulation"):
torch.backends.cuda.matmul.allow_fp16_accumulation = False
unet_path = folder_paths.get_full_path_or_raise("diffusion_models", model_name)
sd = comfy.utils.load_torch_file(unet_path)
if extra_state_dict is not None:
extra_sd = comfy.utils.load_torch_file(extra_state_dict)
sd.update(extra_sd)
del extra_sd
model = comfy.sd.load_diffusion_model_state_dict(sd, model_options=model_options)
if dtype := DTYPE_MAP.get(compute_dtype):
model.set_model_compute_dtype(dtype)
model.force_cast_weights = False
print(f"Setting {model_name} compute dtype to {dtype}")
def patch_attention(model):
self._patch_modules(patch_cublaslinear, sage_attention)
model.add_callback(CallbacksMP.ON_PRE_RUN,patch_attention)
return (model,)
class ModelPatchTorchSettings:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"enable_fp16_accumulation": ("BOOLEAN", {"default": False, "tooltip": "Enable torch.backends.cuda.matmul.allow_fp16_accumulation, requires pytorch 2.7.0 nightly."}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
DESCRIPTION = "Adds callbacks to model to set torch settings before and after running the model."
EXPERIMENTAL = True
CATEGORY = "KJNodes/experimental"
def patch(self, model, enable_fp16_accumulation):
model_clone = model.clone()
def patch_enable_fp16_accum(model):
print("Patching torch settings: torch.backends.cuda.matmul.allow_fp16_accumulation = True")
torch.backends.cuda.matmul.allow_fp16_accumulation = True
def patch_disable_fp16_accum(model):
print("Patching torch settings: torch.backends.cuda.matmul.allow_fp16_accumulation = False")
torch.backends.cuda.matmul.allow_fp16_accumulation = False
if enable_fp16_accumulation:
if hasattr(torch.backends.cuda.matmul, "allow_fp16_accumulation"):
model_clone.add_callback(CallbacksMP.ON_PRE_RUN, patch_enable_fp16_accum)
model_clone.add_callback(CallbacksMP.ON_CLEANUP, patch_disable_fp16_accum)
else:
raise RuntimeError("Failed to set fp16 accumulation, this requires pytorch 2.7.0 nightly currently")
else:
if hasattr(torch.backends.cuda.matmul, "allow_fp16_accumulation"):
model_clone.add_callback(CallbacksMP.ON_PRE_RUN, patch_disable_fp16_accum)
else:
raise RuntimeError("Failed to set fp16 accumulation, this requires pytorch 2.7.0 nightly currently")
return (model_clone,)
def patched_patch_model(self, device_to=None, lowvram_model_memory=0, load_weights=True, force_patch_weights=False):
with self.use_ejected():
device_to = mm.get_torch_device()
full_load_override = getattr(self.model, "full_load_override", "auto")
if full_load_override in ["enabled", "disabled"]:
full_load = full_load_override == "enabled"
else:
full_load = lowvram_model_memory == 0
self.load(device_to, lowvram_model_memory=lowvram_model_memory, force_patch_weights=force_patch_weights, full_load=full_load)
for k in self.object_patches:
old = comfy.utils.set_attr(self.model, k, self.object_patches[k])
if k not in self.object_patches_backup:
self.object_patches_backup[k] = old
self.inject_model()
return self.model
def patched_load_lora_for_models(model, clip, lora, strength_model, strength_clip):
patch_keys = list(model.object_patches_backup.keys())
for k in patch_keys:
#print("backing up object patch: ", k)
comfy.utils.set_attr(model.model, k, model.object_patches_backup[k])
key_map = {}
if model is not None:
key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
if clip is not None:
key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map)
lora = comfy.lora_convert.convert_lora(lora)
loaded = comfy.lora.load_lora(lora, key_map)
#print(temp_object_patches_backup)
if model is not None:
new_modelpatcher = model.clone()
k = new_modelpatcher.add_patches(loaded, strength_model)
else:
k = ()
new_modelpatcher = None
if clip is not None:
new_clip = clip.clone()
k1 = new_clip.add_patches(loaded, strength_clip)
else:
k1 = ()
new_clip = None
k = set(k)
k1 = set(k1)
for x in loaded:
if (x not in k) and (x not in k1):
print("NOT LOADED {}".format(x))
if patch_keys:
if hasattr(model.model, "compile_settings"):
compile_settings = getattr(model.model, "compile_settings")
print("compile_settings: ", compile_settings)
for k in patch_keys:
if "diffusion_model." in k:
# Remove the prefix to get the attribute path
key = k.replace('diffusion_model.', '')
attributes = key.split('.')
# Start with the diffusion_model object
block = model.get_model_object("diffusion_model")
# Navigate through the attributes to get to the block
for attr in attributes:
if attr.isdigit():
block = block[int(attr)]
else:
block = getattr(block, attr)
# Compile the block
compiled_block = torch.compile(block, mode=compile_settings["mode"], dynamic=compile_settings["dynamic"], fullgraph=compile_settings["fullgraph"], backend=compile_settings["backend"])
# Add the compiled block back as an object patch
model.add_object_patch(k, compiled_block)
return (new_modelpatcher, new_clip)
class PatchModelPatcherOrder:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"patch_order": (["object_patch_first", "weight_patch_first"], {"default": "weight_patch_first", "tooltip": "Patch the comfy patch_model function to load weight patches (LoRAs) before compiling the model"}),
"full_load": (["enabled", "disabled", "auto"], {"default": "auto", "tooltip": "Disabling may help with memory issues when loading large models, when changing this you should probably force model reload to avoid issues!"}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "KJNodes/experimental"
DESCRIPTION = "Patch the comfy patch_model function patching order, useful for torch.compile (used as object_patch) as it should come last if you want to use LoRAs with compile"
EXPERIMENTAL = True
def patch(self, model, patch_order, full_load):
comfy.model_patcher.ModelPatcher.temp_object_patches_backup = {}
setattr(model.model, "full_load_override", full_load)
if patch_order == "weight_patch_first":
comfy.model_patcher.ModelPatcher.patch_model = patched_patch_model
comfy.sd.load_lora_for_models = patched_load_lora_for_models
else:
comfy.model_patcher.ModelPatcher.patch_model = _original_functions.get("original_patch_model")
comfy.sd.load_lora_for_models = _original_functions.get("original_load_lora_for_models")
return model,
class TorchCompileModelFluxAdvanced:
def __init__(self):
self._compiled = False
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"backend": (["inductor", "cudagraphs"],),
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
"double_blocks": ("STRING", {"default": "0-18", "multiline": True}),
"single_blocks": ("STRING", {"default": "0-37", "multiline": True}),
"dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}),
},
"optional": {
"dynamo_cache_size_limit": ("INT", {"default": 64, "min": 0, "max": 1024, "step": 1, "tooltip": "torch._dynamo.config.cache_size_limit"}),
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "KJNodes/torchcompile"
EXPERIMENTAL = True
DEPRECATED = True
def parse_blocks(self, blocks_str):
blocks = []
for part in blocks_str.split(','):
part = part.strip()
if '-' in part:
start, end = map(int, part.split('-'))
blocks.extend(range(start, end + 1))
else:
blocks.append(int(part))
return blocks
def patch(self, model, backend, mode, fullgraph, single_blocks, double_blocks, dynamic, dynamo_cache_size_limit):
single_block_list = self.parse_blocks(single_blocks)
double_block_list = self.parse_blocks(double_blocks)
m = model.clone()
diffusion_model = m.get_model_object("diffusion_model")
torch._dynamo.config.cache_size_limit = dynamo_cache_size_limit
if not self._compiled:
try:
for i, block in enumerate(diffusion_model.double_blocks):
if i in double_block_list:
#print("Compiling double_block", i)
m.add_object_patch(f"diffusion_model.double_blocks.{i}", torch.compile(block, mode=mode, dynamic=dynamic, fullgraph=fullgraph, backend=backend))
for i, block in enumerate(diffusion_model.single_blocks):
if i in single_block_list:
#print("Compiling single block", i)
m.add_object_patch(f"diffusion_model.single_blocks.{i}", torch.compile(block, mode=mode, dynamic=dynamic, fullgraph=fullgraph, backend=backend))
self._compiled = True
compile_settings = {
"backend": backend,
"mode": mode,
"fullgraph": fullgraph,
"dynamic": dynamic,
}
setattr(m.model, "compile_settings", compile_settings)
except:
raise RuntimeError("Failed to compile model")
return (m, )
# rest of the layers that are not patched
# diffusion_model.final_layer = torch.compile(diffusion_model.final_layer, mode=mode, fullgraph=fullgraph, backend=backend)
# diffusion_model.guidance_in = torch.compile(diffusion_model.guidance_in, mode=mode, fullgraph=fullgraph, backend=backend)
# diffusion_model.img_in = torch.compile(diffusion_model.img_in, mode=mode, fullgraph=fullgraph, backend=backend)
# diffusion_model.time_in = torch.compile(diffusion_model.time_in, mode=mode, fullgraph=fullgraph, backend=backend)
# diffusion_model.txt_in = torch.compile(diffusion_model.txt_in, mode=mode, fullgraph=fullgraph, backend=backend)
# diffusion_model.vector_in = torch.compile(diffusion_model.vector_in, mode=mode, fullgraph=fullgraph, backend=backend)
class TorchCompileModelFluxAdvancedV2:
def __init__(self):
self._compiled = False
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"backend": (["inductor", "cudagraphs"],),
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
"double_blocks": ("BOOLEAN", {"default": True, "tooltip": "Compile double blocks"}),
"single_blocks": ("BOOLEAN", {"default": True, "tooltip": "Compile single blocks"}),
"dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}),
},
"optional": {
"dynamo_cache_size_limit": ("INT", {"default": 64, "min": 0, "max": 1024, "step": 1, "tooltip": "torch._dynamo.config.cache_size_limit"}),
}
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "KJNodes/torchcompile"
EXPERIMENTAL = True
def patch(self, model, backend, mode, fullgraph, single_blocks, double_blocks, dynamic, dynamo_cache_size_limit):
from comfy_api.torch_helpers import set_torch_compile_wrapper
m = model.clone()
diffusion_model = m.get_model_object("diffusion_model")
torch._dynamo.config.cache_size_limit = dynamo_cache_size_limit
compile_key_list = []
try:
if double_blocks:
for i, block in enumerate(diffusion_model.double_blocks):
compile_key_list.append(f"diffusion_model.double_blocks.{i}")
if single_blocks:
for i, block in enumerate(diffusion_model.single_blocks):
compile_key_list.append(f"diffusion_model.single_blocks.{i}")
set_torch_compile_wrapper(model=m, keys=compile_key_list, backend=backend, mode=mode, dynamic=dynamic, fullgraph=fullgraph)
except:
raise RuntimeError("Failed to compile model")
return (m, )
# rest of the layers that are not patched
# diffusion_model.final_layer = torch.compile(diffusion_model.final_layer, mode=mode, fullgraph=fullgraph, backend=backend)
# diffusion_model.guidance_in = torch.compile(diffusion_model.guidance_in, mode=mode, fullgraph=fullgraph, backend=backend)
# diffusion_model.img_in = torch.compile(diffusion_model.img_in, mode=mode, fullgraph=fullgraph, backend=backend)
# diffusion_model.time_in = torch.compile(diffusion_model.time_in, mode=mode, fullgraph=fullgraph, backend=backend)
# diffusion_model.txt_in = torch.compile(diffusion_model.txt_in, mode=mode, fullgraph=fullgraph, backend=backend)
# diffusion_model.vector_in = torch.compile(diffusion_model.vector_in, mode=mode, fullgraph=fullgraph, backend=backend)
class TorchCompileModelHyVideo:
def __init__(self):
self._compiled = False
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"backend": (["inductor","cudagraphs"], {"default": "inductor"}),
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
"dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}),
"dynamo_cache_size_limit": ("INT", {"default": 64, "min": 0, "max": 1024, "step": 1, "tooltip": "torch._dynamo.config.cache_size_limit"}),
"compile_single_blocks": ("BOOLEAN", {"default": True, "tooltip": "Compile single blocks"}),
"compile_double_blocks": ("BOOLEAN", {"default": True, "tooltip": "Compile double blocks"}),
"compile_txt_in": ("BOOLEAN", {"default": False, "tooltip": "Compile txt_in layers"}),
"compile_vector_in": ("BOOLEAN", {"default": False, "tooltip": "Compile vector_in layers"}),
"compile_final_layer": ("BOOLEAN", {"default": False, "tooltip": "Compile final layer"}),
},
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "KJNodes/torchcompile"
EXPERIMENTAL = True
def patch(self, model, backend, fullgraph, mode, dynamic, dynamo_cache_size_limit, compile_single_blocks, compile_double_blocks, compile_txt_in, compile_vector_in, compile_final_layer):
m = model.clone()
diffusion_model = m.get_model_object("diffusion_model")
torch._dynamo.config.cache_size_limit = dynamo_cache_size_limit
if not self._compiled:
try:
if compile_single_blocks:
for i, block in enumerate(diffusion_model.single_blocks):
compiled_block = torch.compile(block, fullgraph=fullgraph, dynamic=dynamic, backend=backend, mode=mode)
m.add_object_patch(f"diffusion_model.single_blocks.{i}", compiled_block)
if compile_double_blocks:
for i, block in enumerate(diffusion_model.double_blocks):
compiled_block = torch.compile(block, fullgraph=fullgraph, dynamic=dynamic, backend=backend, mode=mode)
m.add_object_patch(f"diffusion_model.double_blocks.{i}", compiled_block)
if compile_txt_in:
compiled_block = torch.compile(diffusion_model.txt_in, fullgraph=fullgraph, dynamic=dynamic, backend=backend, mode=mode)
m.add_object_patch("diffusion_model.txt_in", compiled_block)
if compile_vector_in:
compiled_block = torch.compile(diffusion_model.vector_in, fullgraph=fullgraph, dynamic=dynamic, backend=backend, mode=mode)
m.add_object_patch("diffusion_model.vector_in", compiled_block)
if compile_final_layer:
compiled_block = torch.compile(diffusion_model.final_layer, fullgraph=fullgraph, dynamic=dynamic, backend=backend, mode=mode)
m.add_object_patch("diffusion_model.final_layer", compiled_block)
self._compiled = True
compile_settings = {
"backend": backend,
"mode": mode,
"fullgraph": fullgraph,
"dynamic": dynamic,
}
setattr(m.model, "compile_settings", compile_settings)
except:
raise RuntimeError("Failed to compile model")
return (m, )
class TorchCompileModelWanVideo:
def __init__(self):
self._compiled = False
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"backend": (["inductor","cudagraphs"], {"default": "inductor"}),
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
"dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}),
"dynamo_cache_size_limit": ("INT", {"default": 64, "min": 0, "max": 1024, "step": 1, "tooltip": "torch._dynamo.config.cache_size_limit"}),
"compile_transformer_blocks_only": ("BOOLEAN", {"default": False, "tooltip": "Compile only transformer blocks"}),
},
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "KJNodes/torchcompile"
EXPERIMENTAL = True
DEPRECATED = True
def patch(self, model, backend, fullgraph, mode, dynamic, dynamo_cache_size_limit, compile_transformer_blocks_only):
m = model.clone()
diffusion_model = m.get_model_object("diffusion_model")
torch._dynamo.config.cache_size_limit = dynamo_cache_size_limit
try:
if compile_transformer_blocks_only:
for i, block in enumerate(diffusion_model.blocks):
if hasattr(block, "_orig_mod"):
block = block._orig_mod
compiled_block = torch.compile(block, fullgraph=fullgraph, dynamic=dynamic, backend=backend, mode=mode)
m.add_object_patch(f"diffusion_model.blocks.{i}", compiled_block)
else:
compiled_model = torch.compile(diffusion_model, fullgraph=fullgraph, dynamic=dynamic, backend=backend, mode=mode)
m.add_object_patch("diffusion_model", compiled_model)
compile_settings = {
"backend": backend,
"mode": mode,
"fullgraph": fullgraph,
"dynamic": dynamic,
}
setattr(m.model, "compile_settings", compile_settings)
except:
raise RuntimeError("Failed to compile model")
return (m, )
class TorchCompileModelWanVideoV2:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"backend": (["inductor","cudagraphs"], {"default": "inductor"}),
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
"dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}),
"compile_transformer_blocks_only": ("BOOLEAN", {"default": True, "tooltip": "Compile only transformer blocks, faster compile and less error prone"}),
"dynamo_cache_size_limit": ("INT", {"default": 64, "min": 0, "max": 1024, "step": 1, "tooltip": "torch._dynamo.config.cache_size_limit"}),
},
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "KJNodes/torchcompile"
EXPERIMENTAL = True
def patch(self, model, backend, fullgraph, mode, dynamic, dynamo_cache_size_limit, compile_transformer_blocks_only):
from comfy_api.torch_helpers import set_torch_compile_wrapper
m = model.clone()
diffusion_model = m.get_model_object("diffusion_model")
torch._dynamo.config.cache_size_limit = dynamo_cache_size_limit
try:
if compile_transformer_blocks_only:
compile_key_list = []
for i, block in enumerate(diffusion_model.blocks):
compile_key_list.append(f"diffusion_model.blocks.{i}")
else:
compile_key_list =["diffusion_model"]
set_torch_compile_wrapper(model=m, keys=compile_key_list, backend=backend, mode=mode, dynamic=dynamic, fullgraph=fullgraph)
except:
raise RuntimeError("Failed to compile model")
return (m, )
class TorchCompileModelQwenImage:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"backend": (["inductor","cudagraphs"], {"default": "inductor"}),
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
"dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}),
"compile_transformer_blocks_only": ("BOOLEAN", {"default": True, "tooltip": "Compile only transformer blocks, faster compile and less error prone"}),
"dynamo_cache_size_limit": ("INT", {"default": 64, "min": 0, "max": 1024, "step": 1, "tooltip": "torch._dynamo.config.cache_size_limit"}),
},
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "KJNodes/torchcompile"
EXPERIMENTAL = True
def patch(self, model, backend, fullgraph, mode, dynamic, dynamo_cache_size_limit, compile_transformer_blocks_only):
from comfy_api.torch_helpers import set_torch_compile_wrapper
m = model.clone()
diffusion_model = m.get_model_object("diffusion_model")
torch._dynamo.config.cache_size_limit = dynamo_cache_size_limit
try:
if compile_transformer_blocks_only:
compile_key_list = []
for i, block in enumerate(diffusion_model.transformer_blocks):
compile_key_list.append(f"diffusion_model.transformer_blocks.{i}")
else:
compile_key_list =["diffusion_model"]
set_torch_compile_wrapper(model=m, keys=compile_key_list, backend=backend, mode=mode, dynamic=dynamic, fullgraph=fullgraph)
except:
raise RuntimeError("Failed to compile model")
return (m, )
class TorchCompileVAE:
def __init__(self):
self._compiled_encoder = False
self._compiled_decoder = False
@classmethod
def INPUT_TYPES(s):
return {"required": {
"vae": ("VAE",),
"backend": (["inductor", "cudagraphs"],),
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
"compile_encoder": ("BOOLEAN", {"default": True, "tooltip": "Compile encoder"}),
"compile_decoder": ("BOOLEAN", {"default": True, "tooltip": "Compile decoder"}),
}}
RETURN_TYPES = ("VAE",)
FUNCTION = "compile"
CATEGORY = "KJNodes/torchcompile"
EXPERIMENTAL = True
def compile(self, vae, backend, mode, fullgraph, compile_encoder, compile_decoder):
if compile_encoder:
if not self._compiled_encoder:
encoder_name = "encoder"
if hasattr(vae.first_stage_model, "taesd_encoder"):
encoder_name = "taesd_encoder"
try:
setattr(
vae.first_stage_model,
encoder_name,
torch.compile(
getattr(vae.first_stage_model, encoder_name),
mode=mode,
fullgraph=fullgraph,
backend=backend,
),
)
self._compiled_encoder = True
except:
raise RuntimeError("Failed to compile model")
if compile_decoder:
if not self._compiled_decoder:
decoder_name = "decoder"
if hasattr(vae.first_stage_model, "taesd_decoder"):
decoder_name = "taesd_decoder"
try:
setattr(
vae.first_stage_model,
decoder_name,
torch.compile(
getattr(vae.first_stage_model, decoder_name),
mode=mode,
fullgraph=fullgraph,
backend=backend,
),
)
self._compiled_decoder = True
except:
raise RuntimeError("Failed to compile model")
return (vae, )
class TorchCompileControlNet:
def __init__(self):
self._compiled= False
@classmethod
def INPUT_TYPES(s):
return {"required": {
"controlnet": ("CONTROL_NET",),
"backend": (["inductor", "cudagraphs"],),
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
}}
RETURN_TYPES = ("CONTROL_NET",)
FUNCTION = "compile"
CATEGORY = "KJNodes/torchcompile"
EXPERIMENTAL = True
def compile(self, controlnet, backend, mode, fullgraph):
if not self._compiled:
try:
# for i, block in enumerate(controlnet.control_model.double_blocks):
# print("Compiling controlnet double_block", i)
# controlnet.control_model.double_blocks[i] = torch.compile(block, mode=mode, fullgraph=fullgraph, backend=backend)
controlnet.control_model = torch.compile(controlnet.control_model, mode=mode, fullgraph=fullgraph, backend=backend)
self._compiled = True
except:
self._compiled = False
raise RuntimeError("Failed to compile model")
return (controlnet, )
class TorchCompileLTXModel:
def __init__(self):
self._compiled = False
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"backend": (["inductor", "cudagraphs"],),
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
"dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "KJNodes/torchcompile"
EXPERIMENTAL = True
def patch(self, model, backend, mode, fullgraph, dynamic):
m = model.clone()
diffusion_model = m.get_model_object("diffusion_model")
if not self._compiled:
try:
for i, block in enumerate(diffusion_model.transformer_blocks):
compiled_block = torch.compile(block, mode=mode, dynamic=dynamic, fullgraph=fullgraph, backend=backend)
m.add_object_patch(f"diffusion_model.transformer_blocks.{i}", compiled_block)
self._compiled = True
compile_settings = {
"backend": backend,
"mode": mode,
"fullgraph": fullgraph,
"dynamic": dynamic,
}
setattr(m.model, "compile_settings", compile_settings)
except:
raise RuntimeError("Failed to compile model")
return (m, )
class TorchCompileCosmosModel:
def __init__(self):
self._compiled = False
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"backend": (["inductor", "cudagraphs"],),
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
"dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}),
"dynamo_cache_size_limit": ("INT", {"default": 64, "tooltip": "Set the dynamo cache size limit"}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "KJNodes/torchcompile"
EXPERIMENTAL = True
def patch(self, model, backend, mode, fullgraph, dynamic, dynamo_cache_size_limit):
m = model.clone()
diffusion_model = m.get_model_object("diffusion_model")
torch._dynamo.config.cache_size_limit = dynamo_cache_size_limit
if not self._compiled:
try:
for name, block in diffusion_model.blocks.items():
#print(f"Compiling block {name}")
compiled_block = torch.compile(block, mode=mode, dynamic=dynamic, fullgraph=fullgraph, backend=backend)
m.add_object_patch(f"diffusion_model.blocks.{name}", compiled_block)
#diffusion_model.blocks[name] = compiled_block
self._compiled = True
compile_settings = {
"backend": backend,
"mode": mode,
"fullgraph": fullgraph,
"dynamic": dynamic,
}
setattr(m.model, "compile_settings", compile_settings)
except:
raise RuntimeError("Failed to compile model")
return (m, )
#teacache
try:
from comfy.ldm.wan.model import sinusoidal_embedding_1d
except:
pass
from einops import repeat
from unittest.mock import patch
from contextlib import nullcontext
import numpy as np
def relative_l1_distance(last_tensor, current_tensor):
l1_distance = torch.abs(last_tensor - current_tensor).mean()
norm = torch.abs(last_tensor).mean()
relative_l1_distance = l1_distance / norm
return relative_l1_distance.to(torch.float32)
@torch.compiler.disable()
def tea_cache(self, x, e0, e, transformer_options):
#teacache for cond and uncond separately
rel_l1_thresh = transformer_options["rel_l1_thresh"]
is_cond = True if transformer_options["cond_or_uncond"] == [0] else False
should_calc = True
suffix = "cond" if is_cond else "uncond"
# Init cache dict if not exists
if not hasattr(self, 'teacache_state'):
self.teacache_state = {
'cond': {'accumulated_rel_l1_distance': 0, 'prev_input': None,
'teacache_skipped_steps': 0, 'previous_residual': None},
'uncond': {'accumulated_rel_l1_distance': 0, 'prev_input': None,
'teacache_skipped_steps': 0, 'previous_residual': None}
}
logging.info("\nTeaCache: Initialized")
cache = self.teacache_state[suffix]
if cache['prev_input'] is not None:
if transformer_options["coefficients"] == []:
temb_relative_l1 = relative_l1_distance(cache['prev_input'], e0)
curr_acc_dist = cache['accumulated_rel_l1_distance'] + temb_relative_l1
else:
rescale_func = np.poly1d(transformer_options["coefficients"])
curr_acc_dist = cache['accumulated_rel_l1_distance'] + rescale_func(((e-cache['prev_input']).abs().mean() / cache['prev_input'].abs().mean()).cpu().item())
try:
if curr_acc_dist < rel_l1_thresh:
should_calc = False
cache['accumulated_rel_l1_distance'] = curr_acc_dist
else:
should_calc = True
cache['accumulated_rel_l1_distance'] = 0
except:
should_calc = True
cache['accumulated_rel_l1_distance'] = 0
if transformer_options["coefficients"] == []:
cache['prev_input'] = e0.clone().detach()
else:
cache['prev_input'] = e.clone().detach()
if not should_calc:
x += cache['previous_residual'].to(x.device)
cache['teacache_skipped_steps'] += 1
#print(f"TeaCache: Skipping {suffix} step")
return should_calc, cache
def teacache_wanvideo_vace_forward_orig(self, x, t, context, vace_context, vace_strength, clip_fea=None, freqs=None, transformer_options={}, **kwargs):
# embeddings
x = self.patch_embedding(x.float()).to(x.dtype)
grid_sizes = x.shape[2:]
x = x.flatten(2).transpose(1, 2)
# time embeddings
e = self.time_embedding(
sinusoidal_embedding_1d(self.freq_dim, t).to(dtype=x[0].dtype))
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
# context
context = self.text_embedding(context)
context_img_len = None
if clip_fea is not None:
if self.img_emb is not None:
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
context = torch.concat([context_clip, context], dim=1)
context_img_len = clip_fea.shape[-2]
orig_shape = list(vace_context.shape)
vace_context = vace_context.movedim(0, 1).reshape([-1] + orig_shape[2:])
c = self.vace_patch_embedding(vace_context.float()).to(vace_context.dtype)
c = c.flatten(2).transpose(1, 2)
c = list(c.split(orig_shape[0], dim=0))
if not transformer_options:
raise RuntimeError("Can't access transformer_options, this requires ComfyUI nightly version from Mar 14, 2025 or later")
teacache_enabled = transformer_options.get("teacache_enabled", False)
if not teacache_enabled:
should_calc = True
else:
should_calc, cache = tea_cache(self, x, e0, e, transformer_options)
if should_calc:
original_x = x.clone().detach()
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.blocks):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len)
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap, "transformer_options": transformer_options})
x = out["img"]
else:
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
ii = self.vace_layers_mapping.get(i, None)
if ii is not None:
for iii in range(len(c)):
c_skip, c[iii] = self.vace_blocks[ii](c[iii], x=original_x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
x += c_skip * vace_strength[iii]
del c_skip
if teacache_enabled:
cache['previous_residual'] = (x - original_x).to(transformer_options["teacache_device"])
# head
x = self.head(x, e)
# unpatchify
x = self.unpatchify(x, grid_sizes)
return x
def teacache_wanvideo_forward_orig(self, x, t, context, clip_fea=None, freqs=None, transformer_options={}, **kwargs):
# embeddings
x = self.patch_embedding(x.float()).to(x.dtype)
grid_sizes = x.shape[2:]
x = x.flatten(2).transpose(1, 2)
# time embeddings
e = self.time_embedding(
sinusoidal_embedding_1d(self.freq_dim, t).to(dtype=x[0].dtype))
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
# context
context = self.text_embedding(context)
context_img_len = None
if clip_fea is not None:
if self.img_emb is not None:
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
context = torch.concat([context_clip, context], dim=1)
context_img_len = clip_fea.shape[-2]
teacache_enabled = transformer_options.get("teacache_enabled", False)
if not teacache_enabled:
should_calc = True
else:
should_calc, cache = tea_cache(self, x, e0, e, transformer_options)
if should_calc:
original_x = x.clone().detach()
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.blocks):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len)
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap, "transformer_options": transformer_options})
x = out["img"]
else:
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
if teacache_enabled:
cache['previous_residual'] = (x - original_x).to(transformer_options["teacache_device"])
# head
x = self.head(x, e)
# unpatchify
x = self.unpatchify(x, grid_sizes)
return x
class WanVideoTeaCacheKJ:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"rel_l1_thresh": ("FLOAT", {"default": 0.275, "min": 0.0, "max": 10.0, "step": 0.001, "tooltip": "Threshold for to determine when to apply the cache, compromise between speed and accuracy. When using coefficients a good value range is something between 0.2-0.4 for all but 1.3B model, which should be about 10 times smaller, same as when not using coefficients."}),
"start_percent": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "The start percentage of the steps to use with TeaCache."}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "The end percentage of the steps to use with TeaCache."}),
"cache_device": (["main_device", "offload_device"], {"default": "offload_device", "tooltip": "Device to cache to"}),
"coefficients": (["disabled", "1.3B", "14B", "i2v_480", "i2v_720"], {"default": "i2v_480", "tooltip": "Coefficients for rescaling the relative l1 distance, if disabled the threshold value should be about 10 times smaller than the value used with coefficients."}),
}
}
RETURN_TYPES = ("MODEL",)
RETURN_NAMES = ("model",)
FUNCTION = "patch_teacache"
CATEGORY = "KJNodes/teacache"
DESCRIPTION = """
Patch WanVideo model to use TeaCache. Speeds up inference by caching the output and
applying it instead of doing the step. Best results are achieved by choosing the
appropriate coefficients for the model. Early steps should never be skipped, with too
aggressive values this can happen and the motion suffers. Starting later can help with that too.
When NOT using coefficients, the threshold value should be
about 10 times smaller than the value used with coefficients.
Official recommended values https://github.com/ali-vilab/TeaCache/tree/main/TeaCache4Wan2.1:
<pre style='font-family:monospace'>
+-------------------+--------+---------+--------+
| Model | Low | Medium | High |
+-------------------+--------+---------+--------+
| Wan2.1 t2v 1.3B | 0.05 | 0.07 | 0.08 |
| Wan2.1 t2v 14B | 0.14 | 0.15 | 0.20 |
| Wan2.1 i2v 480P | 0.13 | 0.19 | 0.26 |
| Wan2.1 i2v 720P | 0.18 | 0.20 | 0.30 |
+-------------------+--------+---------+--------+
</pre>
"""
EXPERIMENTAL = True
def patch_teacache(self, model, rel_l1_thresh, start_percent, end_percent, cache_device, coefficients):
if rel_l1_thresh == 0:
return (model,)
if coefficients == "disabled" and rel_l1_thresh > 0.1:
logging.warning("Threshold value is too high for TeaCache without coefficients, consider using coefficients for better results.")
if coefficients != "disabled" and rel_l1_thresh < 0.1 and "1.3B" not in coefficients:
logging.warning("Threshold value is too low for TeaCache with coefficients, consider using higher threshold value for better results.")
# type_str = str(type(model.model.model_config).__name__)
#if model.model.diffusion_model.dim == 1536:
# model_type ="1.3B"
# else:
# if "WAN21_T2V" in type_str:
# model_type = "14B"
# elif "WAN21_I2V" in type_str:
# model_type = "i2v_480"
# else:
# model_type = "i2v_720" #how to detect this?
teacache_coefficients_map = {
"disabled": [],
"1.3B": [2.39676752e+03, -1.31110545e+03, 2.01331979e+02, -8.29855975e+00, 1.37887774e-01],
"14B": [-5784.54975374, 5449.50911966, -1811.16591783, 256.27178429, -13.02252404],
"i2v_480": [-3.02331670e+02, 2.23948934e+02, -5.25463970e+01, 5.87348440e+00, -2.01973289e-01],
"i2v_720": [-114.36346466, 65.26524496, -18.82220707, 4.91518089, -0.23412683],
}
coefficients = teacache_coefficients_map[coefficients]
teacache_device = mm.get_torch_device() if cache_device == "main_device" else mm.unet_offload_device()
model_clone = model.clone()
if 'transformer_options' not in model_clone.model_options:
model_clone.model_options['transformer_options'] = {}
model_clone.model_options["transformer_options"]["rel_l1_thresh"] = rel_l1_thresh
model_clone.model_options["transformer_options"]["teacache_device"] = teacache_device
model_clone.model_options["transformer_options"]["coefficients"] = coefficients
diffusion_model = model_clone.get_model_object("diffusion_model")
def outer_wrapper(start_percent, end_percent):
def unet_wrapper_function(model_function, kwargs):
input = kwargs["input"]
timestep = kwargs["timestep"]
c = kwargs["c"]
sigmas = c["transformer_options"]["sample_sigmas"]
cond_or_uncond = kwargs["cond_or_uncond"]
last_step = (len(sigmas) - 1)
matched_step_index = (sigmas == timestep[0] ).nonzero()
if len(matched_step_index) > 0:
current_step_index = matched_step_index.item()
else:
for i in range(len(sigmas) - 1):
# walk from beginning of steps until crossing the timestep
if (sigmas[i] - timestep[0]) * (sigmas[i + 1] - timestep[0]) <= 0:
current_step_index = i
break
else:
current_step_index = 0
if current_step_index == 0:
if (len(cond_or_uncond) == 1 and cond_or_uncond[0] == 1) or len(cond_or_uncond) == 2:
if hasattr(diffusion_model, "teacache_state"):
delattr(diffusion_model, "teacache_state")
logging.info("\nResetting TeaCache state")
current_percent = current_step_index / (len(sigmas) - 1)
c["transformer_options"]["current_percent"] = current_percent
if start_percent <= current_percent <= end_percent:
c["transformer_options"]["teacache_enabled"] = True
forward_function = teacache_wanvideo_vace_forward_orig if hasattr(diffusion_model, "vace_layers") else teacache_wanvideo_forward_orig
context = patch.multiple(
diffusion_model,
forward_orig=forward_function.__get__(diffusion_model, diffusion_model.__class__)
)
with context:
out = model_function(input, timestep, **c)
if current_step_index+1 == last_step and hasattr(diffusion_model, "teacache_state"):
if len(cond_or_uncond) == 1 and cond_or_uncond[0] == 0:
skipped_steps_cond = diffusion_model.teacache_state["cond"]["teacache_skipped_steps"]
skipped_steps_uncond = diffusion_model.teacache_state["uncond"]["teacache_skipped_steps"]
logging.info("-----------------------------------")
logging.info(f"TeaCache skipped:")
logging.info(f"{skipped_steps_cond} cond steps")
logging.info(f"{skipped_steps_uncond} uncond step")
logging.info(f"out of {last_step} steps")
logging.info("-----------------------------------")
elif len(cond_or_uncond) == 2:
skipped_steps_cond = diffusion_model.teacache_state["uncond"]["teacache_skipped_steps"]
logging.info("-----------------------------------")
logging.info(f"TeaCache skipped:")
logging.info(f"{skipped_steps_cond} cond steps")
logging.info(f"out of {last_step} steps")
logging.info("-----------------------------------")
return out
return unet_wrapper_function
model_clone.set_model_unet_function_wrapper(outer_wrapper(start_percent=start_percent, end_percent=end_percent))
return (model_clone,)
from comfy.ldm.flux.math import apply_rope
def modified_wan_self_attention_forward(self, x, freqs):
r"""
Args:
x(Tensor): Shape [B, L, num_heads, C / num_heads]
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
"""
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
# query, key, value function
def qkv_fn(x):
q = self.norm_q(self.q(x)).view(b, s, n, d)
k = self.norm_k(self.k(x)).view(b, s, n, d)
v = self.v(x).view(b, s, n * d)
return q, k, v
q, k, v = qkv_fn(x)
q, k = apply_rope(q, k, freqs)
feta_scores = get_feta_scores(q, k, self.num_frames, self.enhance_weight)
x = comfy.ldm.modules.attention.optimized_attention(
q.view(b, s, n * d),
k.view(b, s, n * d),
v,
heads=self.num_heads,
)
x = self.o(x)
x *= feta_scores
return x
from einops import rearrange
def get_feta_scores(query, key, num_frames, enhance_weight):
img_q, img_k = query, key #torch.Size([2, 9216, 12, 128])
_, ST, num_heads, head_dim = img_q.shape
spatial_dim = ST / num_frames
spatial_dim = int(spatial_dim)
query_image = rearrange(
img_q, "B (T S) N C -> (B S) N T C", T=num_frames, S=spatial_dim, N=num_heads, C=head_dim
)
key_image = rearrange(
img_k, "B (T S) N C -> (B S) N T C", T=num_frames, S=spatial_dim, N=num_heads, C=head_dim
)
return feta_score(query_image, key_image, head_dim, num_frames, enhance_weight)
def feta_score(query_image, key_image, head_dim, num_frames, enhance_weight):
scale = head_dim**-0.5
query_image = query_image * scale
attn_temp = query_image @ key_image.transpose(-2, -1) # translate attn to float32
attn_temp = attn_temp.to(torch.float32)
attn_temp = attn_temp.softmax(dim=-1)
# Reshape to [batch_size * num_tokens, num_frames, num_frames]
attn_temp = attn_temp.reshape(-1, num_frames, num_frames)
# Create a mask for diagonal elements
diag_mask = torch.eye(num_frames, device=attn_temp.device).bool()
diag_mask = diag_mask.unsqueeze(0).expand(attn_temp.shape[0], -1, -1)
# Zero out diagonal elements
attn_wo_diag = attn_temp.masked_fill(diag_mask, 0)
# Calculate mean for each token's attention matrix
# Number of off-diagonal elements per matrix is n*n - n
num_off_diag = num_frames * num_frames - num_frames
mean_scores = attn_wo_diag.sum(dim=(1, 2)) / num_off_diag
enhance_scores = mean_scores.mean() * (num_frames + enhance_weight)
enhance_scores = enhance_scores.clamp(min=1)
return enhance_scores
import types
class WanAttentionPatch:
def __init__(self, num_frames, weight):
self.num_frames = num_frames
self.enhance_weight = weight
def __get__(self, obj, objtype=None):
# Create bound method with stored parameters
def wrapped_attention(self_module, *args, **kwargs):
self_module.num_frames = self.num_frames
self_module.enhance_weight = self.enhance_weight
return modified_wan_self_attention_forward(self_module, *args, **kwargs)
return types.MethodType(wrapped_attention, obj)
class WanVideoEnhanceAVideoKJ:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"latent": ("LATENT", {"tooltip": "Only used to get the latent count"}),
"weight": ("FLOAT", {"default": 2.0, "min": 0.0, "max": 10.0, "step": 0.001, "tooltip": "Strength of the enhance effect"}),
}
}
RETURN_TYPES = ("MODEL",)
RETURN_NAMES = ("model",)
FUNCTION = "enhance"
CATEGORY = "KJNodes/experimental"
DESCRIPTION = "https://github.com/NUS-HPC-AI-Lab/Enhance-A-Video"
EXPERIMENTAL = True
def enhance(self, model, weight, latent):
if weight == 0:
return (model,)
num_frames = latent["samples"].shape[2]
model_clone = model.clone()
if 'transformer_options' not in model_clone.model_options:
model_clone.model_options['transformer_options'] = {}
model_clone.model_options["transformer_options"]["enhance_weight"] = weight
diffusion_model = model_clone.get_model_object("diffusion_model")
compile_settings = getattr(model.model, "compile_settings", None)
for idx, block in enumerate(diffusion_model.blocks):
patched_attn = WanAttentionPatch(num_frames, weight).__get__(block.self_attn, block.__class__)
if compile_settings is not None:
patched_attn = torch.compile(patched_attn, mode=compile_settings["mode"], dynamic=compile_settings["dynamic"], fullgraph=compile_settings["fullgraph"], backend=compile_settings["backend"])
model_clone.add_object_patch(f"diffusion_model.blocks.{idx}.self_attn.forward", patched_attn)
return (model_clone,)
def normalized_attention_guidance(self, query, context_positive, context_negative):
k_positive = self.norm_k(self.k(context_positive))
v_positive = self.v(context_positive)
k_negative = self.norm_k(self.k(context_negative))
v_negative = self.v(context_negative)
x_positive = comfy.ldm.modules.attention.optimized_attention(query, k_positive, v_positive, heads=self.num_heads).flatten(2)
x_negative = comfy.ldm.modules.attention.optimized_attention(query, k_negative, v_negative, heads=self.num_heads).flatten(2)
nag_guidance = x_positive * self.nag_scale - x_negative * (self.nag_scale - 1)
norm_positive = torch.norm(x_positive, p=1, dim=-1, keepdim=True).expand_as(x_positive)
norm_guidance = torch.norm(nag_guidance, p=1, dim=-1, keepdim=True).expand_as(nag_guidance)
scale = torch.nan_to_num(norm_guidance / norm_positive, nan=10.0)
mask = scale > self.nag_tau
adjustment = (norm_positive * self.nag_tau) / (norm_guidance + 1e-7)
nag_guidance = torch.where(mask, nag_guidance * adjustment, nag_guidance)
x = nag_guidance * self.nag_alpha + x_positive * (1 - self.nag_alpha)
del nag_guidance
return x
#region NAG
def wan_crossattn_forward_nag(self, x, context, **kwargs):
r"""
Args:
x(Tensor): Shape [B, L1, C]
context(Tensor): Shape [B, L2, C]
"""
# Determine batch splitting and context handling
if self.input_type == "default":
# Single or [pos, neg] pair
if context.shape[0] == 1:
x_pos, context_pos = x, context
x_neg, context_neg = None, None
else:
x_pos, x_neg = torch.chunk(x, 2, dim=0)
context_pos, context_neg = torch.chunk(context, 2, dim=0)
elif self.input_type == "batch":
# Standard batch, no CFG
x_pos, context_pos = x, context
x_neg, context_neg = None, None
# Positive branch
q_pos = self.norm_q(self.q(x_pos))
nag_context = self.nag_context
if self.input_type == "batch":
nag_context = nag_context.repeat(x_pos.shape[0], 1, 1)
x_pos_out = normalized_attention_guidance(self, q_pos, context_pos, nag_context)
# Negative branch
if x_neg is not None and context_neg is not None:
q_neg = self.norm_q(self.q(x_neg))
k_neg = self.norm_k(self.k(context_neg))
v_neg = self.v(context_neg)
x_neg_out = comfy.ldm.modules.attention.optimized_attention(q_neg, k_neg, v_neg, heads=self.num_heads)
x = torch.cat([x_pos_out, x_neg_out], dim=0)
else:
x = x_pos_out
return self.o(x)
def wan_i2v_crossattn_forward_nag(self, x, context, context_img_len):
r"""
Args:
x(Tensor): Shape [B, L1, C]
context(Tensor): Shape [B, L2, C]
"""
context_img = context[:, :context_img_len]
context = context[:, context_img_len:]
q_img = self.norm_q(self.q(x))
k_img = self.norm_k_img(self.k_img(context_img))
v_img = self.v_img(context_img)
img_x = comfy.ldm.modules.attention.optimized_attention(q_img, k_img, v_img, heads=self.num_heads)
if context.shape[0] == 2:
x, x_real_negative = torch.chunk(x, 2, dim=0)
context_positive, context_negative = torch.chunk(context, 2, dim=0)
else:
context_positive = context
context_negative = None
q = self.norm_q(self.q(x))
x = normalized_attention_guidance(self, q, context_positive, self.nag_context)
if context_negative is not None:
q_real_negative = self.norm_q(self.q(x_real_negative))
k_real_negative = self.norm_k(self.k(context_negative))
v_real_negative = self.v(context_negative)
x_real_negative = comfy.ldm.modules.attention.optimized_attention(q_real_negative, k_real_negative, v_real_negative, heads=self.num_heads)
x = torch.cat([x, x_real_negative], dim=0)
# output
x = x + img_x
x = self.o(x)
return x
class WanCrossAttentionPatch:
def __init__(self, context, nag_scale, nag_alpha, nag_tau, i2v=False, input_type="default"):
self.nag_context = context
self.nag_scale = nag_scale
self.nag_alpha = nag_alpha
self.nag_tau = nag_tau
self.i2v = i2v
self.input_type = input_type
def __get__(self, obj, objtype=None):
# Create bound method with stored parameters
def wrapped_attention(self_module, *args, **kwargs):
self_module.nag_context = self.nag_context
self_module.nag_scale = self.nag_scale
self_module.nag_alpha = self.nag_alpha
self_module.nag_tau = self.nag_tau
self_module.input_type = self.input_type
if self.i2v:
return wan_i2v_crossattn_forward_nag(self_module, *args, **kwargs)
else:
return wan_crossattn_forward_nag(self_module, *args, **kwargs)
return types.MethodType(wrapped_attention, obj)
class WanVideoNAG:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"conditioning": ("CONDITIONING",),
"nag_scale": ("FLOAT", {"default": 11.0, "min": 0.0, "max": 100.0, "step": 0.001, "tooltip": "Strength of negative guidance effect"}),
"nag_alpha": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.001, "tooltip": "Mixing coefficient in that controls the balance between the normalized guided representation and the original positive representation."}),
"nag_tau": ("FLOAT", {"default": 2.5, "min": 0.0, "max": 10.0, "step": 0.001, "tooltip": "Clipping threshold that controls how much the guided attention can deviate from the positive attention."}),
},
"optional": {
"input_type": (["default", "batch"], {"tooltip": "Type of the model input"}),
},
}
RETURN_TYPES = ("MODEL",)
RETURN_NAMES = ("model",)
FUNCTION = "patch"
CATEGORY = "KJNodes/experimental"
DESCRIPTION = "https://github.com/ChenDarYen/Normalized-Attention-Guidance"
EXPERIMENTAL = True
def patch(self, model, conditioning, nag_scale, nag_alpha, nag_tau, input_type="default"):
if nag_scale == 0:
return (model,)
device = mm.get_torch_device()
dtype = mm.unet_dtype()
model_clone = model.clone()
diffusion_model = model_clone.get_model_object("diffusion_model")
diffusion_model.text_embedding.to(device)
context = diffusion_model.text_embedding(conditioning[0][0].to(device, dtype))
type_str = str(type(model.model.model_config).__name__)
i2v = True if "WAN21_I2V" in type_str else False
for idx, block in enumerate(diffusion_model.blocks):
patched_attn = WanCrossAttentionPatch(context, nag_scale, nag_alpha, nag_tau, i2v, input_type=input_type).__get__(block.cross_attn, block.__class__)
model_clone.add_object_patch(f"diffusion_model.blocks.{idx}.cross_attn.forward", patched_attn)
return (model_clone,)
class SkipLayerGuidanceWanVideo:
@classmethod
def INPUT_TYPES(s):
return {"required": {"model": ("MODEL", ),
"blocks": ("STRING", {"default": "10", "multiline": False}),
"start_percent": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.001}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "slg"
EXPERIMENTAL = True
DESCRIPTION = "Simplified skip layer guidance that only skips the uncond on selected blocks"
CATEGORY = "advanced/guidance"
def slg(self, model, start_percent, end_percent, blocks):
def skip(args, extra_args):
transformer_options = extra_args.get("transformer_options", {})
original_block = extra_args["original_block"]
if not transformer_options:
raise ValueError("transformer_options not found in extra_args, currently SkipLayerGuidanceWanVideo only works with TeaCacheKJ")
if start_percent <= transformer_options["current_percent"] <= end_percent:
if args["img"].shape[0] == 2:
prev_img_uncond = args["img"][0].unsqueeze(0)
new_args = {
"img": args["img"][1].unsqueeze(0),
"txt": args["txt"][1].unsqueeze(0),
"vec": args["vec"][1].unsqueeze(0),
"pe": args["pe"][1].unsqueeze(0)
}
block_out = original_block(new_args)
out = {
"img": torch.cat([prev_img_uncond, block_out["img"]], dim=0),
"txt": args["txt"],
"vec": args["vec"],
"pe": args["pe"]
}
else:
if transformer_options.get("cond_or_uncond") == [0]:
out = original_block(args)
else:
out = args
else:
out = original_block(args)
return out
block_list = [int(x.strip()) for x in blocks.split(",")]
blocks = [int(i) for i in block_list]
logging.info(f"Selected blocks to skip uncond on: {blocks}")
m = model.clone()
for b in blocks:
#m.set_model_patch_replace(skip, "dit", "double_block", b)
model_options = m.model_options["transformer_options"].copy()
if "patches_replace" not in model_options:
model_options["patches_replace"] = {}
else:
model_options["patches_replace"] = model_options["patches_replace"].copy()
if "dit" not in model_options["patches_replace"]:
model_options["patches_replace"]["dit"] = {}
else:
model_options["patches_replace"]["dit"] = model_options["patches_replace"]["dit"].copy()
block = ("double_block", b)
model_options["patches_replace"]["dit"][block] = skip
m.model_options["transformer_options"] = model_options
return (m, )
class CFGZeroStarAndInit:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"use_zero_init": ("BOOLEAN", {"default": True}),
"zero_init_steps": ("INT", {"default": 0, "min": 0, "tooltip": "for zero init, starts from 0 so first step is always zeroed out if use_zero_init enabled"}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
DESCRIPTION = "https://github.com/WeichenFan/CFG-Zero-star"
CATEGORY = "KJNodes/experimental"
EXPERIMENTAL = True
def patch(self, model, use_zero_init, zero_init_steps):
def cfg_zerostar(args):
#zero init
cond = args["cond"]
timestep = args["timestep"]
sigmas = args["model_options"]["transformer_options"]["sample_sigmas"]
matched_step_index = (sigmas == timestep[0]).nonzero()
if len(matched_step_index) > 0:
current_step_index = matched_step_index.item()
else:
for i in range(len(sigmas) - 1):
if (sigmas[i] - timestep[0]) * (sigmas[i + 1] - timestep[0]) <= 0:
current_step_index = i
break
else:
current_step_index = 0
if (current_step_index <= zero_init_steps) and use_zero_init:
return cond * 0
uncond = args["uncond"]
cond_scale = args["cond_scale"]
batch_size = cond.shape[0]
positive_flat = cond.view(batch_size, -1)
negative_flat = uncond.view(batch_size, -1)
dot_product = torch.sum(positive_flat * negative_flat, dim=1, keepdim=True)
squared_norm = torch.sum(negative_flat ** 2, dim=1, keepdim=True) + 1e-8
alpha = dot_product / squared_norm
alpha = alpha.view(batch_size, *([1] * (len(cond.shape) - 1)))
noise_pred = uncond * alpha + cond_scale * (cond - uncond * alpha)
return noise_pred
m = model.clone()
m.set_model_sampler_cfg_function(cfg_zerostar)
return (m, ) |