import gradio as gr import os from pathlib import Path import argparse import shutil from train_dreambooth import run_training from convertosd import convert from PIL import Image import torch css = ''' .instruction{position: absolute; top: 0;right: 0;margin-top: 0px !important} .arrow{position: absolute;top: 0;right: -8px;margin-top: -8px !important} #component-4, #component-3, #component-10{min-height: 0} ''' shutil.unpack_archive("mix.zip", "mix") model_to_load = "multimodalart/sd-fine-tunable" maximum_concepts = 3 def swap_values_files(*total_files): file_counter = 0 for files in total_files: if(files): for file in files: filename = Path(file.orig_name).stem pt=''.join([i for i in filename if not i.isdigit()]) pt=pt.replace("_"," ") pt=pt.replace("(","") pt=pt.replace(")","") instance_prompt = pt print(instance_prompt) file_counter += 1 training_steps = (file_counter*200) return training_steps def swap_text(option): mandatory_liability = "You must have the right to do so and you are liable for the images you use" if(option == "object"): instance_prompt_example = "cttoy" freeze_for = 50 return [f"You are going to train `object`(s), upload 5-10 images of each object you are planning on training on from different angles/perspectives. {mandatory_liability}:", '''''', f"You should name your concept with a unique made up word that has low chance of the model already knowing it (e.g.: `{instance_prompt_example}` here). Images will be automatically cropped to 512x512.", freeze_for] elif(option == "person"): instance_prompt_example = "julcto" freeze_for = 100 return [f"You are going to train a `person`(s), upload 10-20 images of each person you are planning on training on from different angles/perspectives. {mandatory_liability}:", '''''', f"You should name the files with a unique word that represent your concept (e.g.: `{instance_prompt_example}` here). Images will be automatically cropped to 512x512.", freeze_for] elif(option == "style"): instance_prompt_example = "trsldamrl" freeze_for = 10 return [f"You are going to train a `style`, upload 10-20 images of the style you are planning on training on. Name the files with the words you would like {mandatory_liability}:", '''''', f"You should name your files with a unique word that represent your concept (e.g.: `{instance_prompt_example}` here). Images will be automatically cropped to 512x512.", freeze_for] def train(*inputs): if os.path.exists("diffusers_model.zip"): os.remove("diffusers_model.zip") if os.path.exists("model.ckpt"): os.remove("model.ckpt") file_counter = 0 for i, input in enumerate(inputs): if(i < maximum_concepts-1): if(input): os.makedirs('instance_images',exist_ok=True) files = inputs[i+(maximum_concepts*2)] prompt = inputs[i+maximum_concepts] for j, file_temp in enumerate(files): file = Image.open(file_temp.name) width, height = file.size side_length = min(width, height) left = (width - side_length)/2 top = (height - side_length)/2 right = (width + side_length)/2 bottom = (height + side_length)/2 image = file.crop((left, top, right, bottom)) image = image.resize((512, 512)) extension = file_temp.name.split(".")[1] image = image.convert('RGB') image.save(f'instance_images/{prompt}_({j+1}).jpg', format="JPEG", quality = 100) file_counter += 1 os.makedirs('output_model',exist_ok=True) uses_custom = inputs[-1] type_of_thing = inputs[-4] if(uses_custom): Training_Steps = int(inputs[-3]) Train_text_encoder_for = int(inputs[-2]) else: Training_Steps = file_counter*200 if(type_of_thing == "person"): class_data_dir = "mix" Train_text_encoder_for=100 args_txt_encoder = argparse.Namespace( image_captions_filename = True, train_text_encoder = True, pretrained_model_name_or_path=model_to_load, instance_data_dir="instance_images", class_data_dir=class_data_dir, output_dir="output_model", with_prior_preservation=True, prior_loss_weight=1.0, instance_prompt="", seed=42, resolution=512, mixed_precision="fp16", train_batch_size=1, gradient_accumulation_steps=1, gradient_checkpointing=True, use_8bit_adam=True, learning_rate=2e-6, lr_scheduler="polynomial", lr_warmup_steps=0, max_train_steps=Training_Steps, num_class_images=200 ) args_unet = argparse.Namespace( image_captions_filename = True, train_only_unet=True, Session_dir="output_model", save_starting_step=0, save_n_steps=0, pretrained_model_name_or_path=model_to_load, instance_data_dir="instance_images", output_dir="output_model", instance_prompt="", seed=42, resolution=512, mixed_precision="fp16", train_batch_size=1, gradient_accumulation_steps=1, gradient_checkpointing=False, use_8bit_adam=True, learning_rate=2e-6, lr_scheduler="polynomial", lr_warmup_steps=0, max_train_steps=Training_Steps ) run_training(args_txt_encoder) run_training(args_unet) elif(type_of_thing == "object" or type_of_thing == "style"): if(type_of_thing == "object"): Train_text_encoder_for=30 elif(type_of_thing == "style"): Train_text_encoder_for=15 class_data_dir = None stptxt = int((Training_Steps*Train_text_encoder_for)/100) args_general = argparse.Namespace( image_captions_filename = True, train_text_encoder = True, stop_text_encoder_training = stptxt, save_n_steps = 0, pretrained_model_name_or_path = model_to_load, instance_data_dir="instance_images", class_data_dir=class_data_dir, output_dir="output_model", instance_prompt="", seed=42, resolution=512, mixed_precision="fp16", train_batch_size=1, gradient_accumulation_steps=1, use_8bit_adam=True, learning_rate=2e-6, lr_scheduler="polynomial", lr_warmup_steps = 0, max_train_steps=Training_Steps, ) run_training(args_general) convert("output_model", "model.ckpt") shutil.rmtree('instance_images') shutil.make_archive("diffusers_model", 'zip', "output_model") shutil.rmtree("output_model") torch.cuda.empty_cache() return [gr.update(visible=True, value=["diffusers_model.zip", "model.ckpt"]), gr.update(visible=True), gr.update(visible=True)] def generate(prompt): from diffusers import StableDiffusionPipeline pipe = StableDiffusionPipeline.from_pretrained("./output_model", torch_dtype=torch.float16) pipe = pipe.to("cuda") image = pipe(prompt).images[0] return(image) def push(path): pass with gr.Blocks(css=css) as demo: with gr.Box(): if "IS_SHARED_UI" in os.environ: gr.HTML('''
For it to work, you have to duplicate the Space and run it on your own profile where a (paid) private GPU will be attributed to it during runtime. It will cost you < US$1 to train a model on default settings! 🤑