import gradio as gr import os from pathlib import Path import argparse import shutil from train_dreambooth import run_training css = ''' .instruction{position: absolute; top: 0;right: 0;margin-top: 0px !important} .arrow{position: absolute;top: 0;right: -8px;margin-top: -8px !important} #component-4, #component-3, #component-10{min-height: 0} ''' shutil.unpack_archive("mix.zip", "mix") maximum_concepts = 3 def swap_values_files(*total_files): file_counter = 0 for files in total_files: if(files): for file in files: filename = Path(file.orig_name).stem pt=''.join([i for i in filename if not i.isdigit()]) pt=pt.replace("_"," ") pt=pt.replace("(","") pt=pt.replace(")","") instance_prompt = pt print(instance_prompt) file_counter += 1 training_steps = (file_counter*200) return training_steps def swap_text(option): mandatory_liability = "You must have the right to do so and you are liable for the images you use" if(option == "object"): instance_prompt_example = "cttoy" freeze_for = 50 return [f"You are going to train `object`(s), upload 5-10 images of each object you are planning on training on from different angles/perspectives. {mandatory_liability}:", '''''', f"You should name your concept with a unique made up word that has low chance of the model already knowing it (e.g.: `{instance_prompt_example}` here)", freeze_for] elif(option == "person"): instance_prompt_example = "julcto" freeze_for = 100 return [f"You are going to train a `person`(s), upload 10-20 images of each person you are planning on training on from different angles/perspectives. {mandatory_liability}:", '''''', f"You should name the files with a unique word that represent your concept (like `{instance_prompt_example}` in this example). You can train multiple concepts as well.", freeze_for] elif(option == "style"): instance_prompt_example = "mspolstyll" freeze_for = 10 return [f"You are going to train a `style`, upload 10-20 images of the style you are planning on training on. Name the files with the words you would like {mandatory_liability}:", '''''', f"You should name your files with a unique word that represent your concept (as `{instance_prompt_example}` for example). You can train multiple concepts as well.", freeze_for] def train(*inputs): file_counter = 0 for i, input in enumerate(inputs): if(i < maximum_concepts-1): if(input): os.makedirs('instance_images',exist_ok=True) files = inputs[i+(maximum_concepts*2)] prompt = inputs[i+maximum_concepts] for j, file in enumerate(files): shutil.copy(file.name, f'instance_images/{prompt} ({j+1}).jpg') file_counter += 1 uses_custom = inputs[-1] if(uses_custom): Training_Steps = int(inputs[-3]) Train_text_encoder_for = int(inputs[-2]) stptxt = int((Training_Steps*Train_text_encoder_for)/100) else: Training_Steps = file_counter*200 if(inputs[-4] == "person"): class_data_dir = "mix" args_txt_encoder = argparse.Namespace( image_captions_filename = True, train_text_encoder = True, pretrained_model_name_or_path="./stable-diffusion-v1-5", instance_data_dir="instance_images", class_data_dir=class_data_dir, output_dir="output_model", with_prior_preservation=True, prior_loss_weight=1.0, instance_prompt="", seed=42, resolution=512, mixed_precision="fp16", train_batch_size=1, gradient_accumulation_steps=1, gradient_checkpointing=True, use_8bit_adam=True, learning_rate=2e-6, lr_scheduler="polynomial", lr_warmup_steps=0, max_train_steps=Training_Steps, num_class_images=200 ) args_unet = argparse.Namespace( image_captions_filename = True, train_only_unet=True, Session_dir="output_model", save_starting_step=0, save_n_steps=0, pretrained_model_name_or_path="./stable-diffusion-v1-5", instance_data_dir="instance_images", output_dir="output_model", instance_prompt="", seed=42, resolution=512, mixed_precision="fp16", train_batch_size=1, gradient_accumulation_steps=1, gradient_checkpointing=False, use_8bit_adam=True, learning_rate=2e-6, lr_scheduler="polynomial", lr_warmup_steps=0, max_train_steps=Training_Steps ) run_training(args_txt_encoder) run_training(args_unet) elif(inputs[-4] == "object"): class_data_dir = None elif(inputs[-4] == "style"): class_data_dir = None args_general = argparse.Namespace( image_captions_filename = True, train_text_encoder = True, stop_text_encoder_training = stptxt, save_n_steps = 0, dump_only_text_encoder = True, pretrained_model_name_or_path = "./stable-diffusion-v1-5", instance_data_dir="instance_images", class_data_dir=class_data_dir, output_dir="output_model", instance_prompt="", seed=42, resolution=512, mixed_precision="fp16", train_batch_size=1, gradient_accumulation_steps=1, use_8bit_adam=True, learning_rate=2e-6, lr_scheduler="polynomial", lr_warmup_steps = 0, max_train_steps=Training_Steps, ) run_training(args_general) os.rmdir('instance_images') with gr.Blocks(css=css) as demo: with gr.Box(): # You can remove this part here for your local clone gr.HTML('''
For it to work, you have to duplicate the Space and run it on your own profile where a (paid) private GPU will be attributed to it during runtime. It will cost you < US$1 to train a model on default settings! 🤑