from hidiffusion import apply_hidiffusion, remove_hidiffusion from diffusers import DiffusionPipeline, DDIMScheduler, AutoencoderKL import gradio as gr import torch import spaces model = "stabilityai/stable-diffusion-xl-base-1.0" vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) scheduler = DDIMScheduler.from_pretrained(model, subfolder="scheduler") pipe = DiffusionPipeline.from_pretrained(model, vae=vae, scheduler=scheduler, torch_dtype=torch.float16, use_safetensors=True, variant="fp16").to("cuda") model_15 = "runwayml/stable-diffusion-v1-5" scheduler_15 = DDIMScheduler.from_pretrained(model_15, subfolder="scheduler") pipe_15 = DiffusionPipeline.from_pretrained(model_15, vae=vae, scheduler=scheduler_15, torch_dtype=torch.float16, use_safetensors=True, variant="fp16").to("cuda") #pipe.enable_model_cpu_offload() pipe.enable_vae_tiling() @spaces.GPU def run_hidiffusion(prompt, negative_prompt="", progress=gr.Progress(track_tqdm=True)): apply_hidiffusion(pipe) return pipe(prompt, guidance_scale=7.5, height=2048, width=2048, eta=1.0, negative_prompt=negative_prompt, num_inference_steps=25).images[0] @spaces.GPU def run_hidiffusion_15(prompt, negative_prompt="", progress=gr.Progress(track_tqdm=True)): apply_hidiffusion(pipe_15) return pipe_15(prompt, guidance_scale=7.5, height=1024, width=1024, eta=1.0, negative_prompt=negative_prompt, num_inference_steps=25).images[0] with gr.Blocks() as demo: gr.Markdown("# HiDiffusion Demo") gr.Markdown("Make diffusion models generate higher resolution images with Resolution-Aware U-Net & Multi-head Self-Attention. [Paper](https://huggingface.co/papers/2311.17528) | [Code](https://github.com/megvii-research/HiDiffusion)") with gr.Tab("SDXL in 2048x2048"): with gr.Row(): prompt = gr.Textbox(label="Prompt") negative_prompt = gr.Textbox(label="Negative Prompt") btn = gr.Button("Run") with gr.Tab("SD1.5 in 1024x1024"): with gr.Row(): prompt_15 = gr.Textbox(label="Prompt") negative_prompt_15 = gr.Textbox(label="Negative Prompt") btn_15 = gr.Button("Run") output = gr.Image(label="Result") gr.Examples(examples=[ "Echoes of a forgotten song drift across the moonlit sea, where a ghost ship sails, its spectral crew bound to an eternal quest for redemption.", "Roger rabbit as a real person, photorealistic, cinematic.", "tanding tall amidst the ruins, a stone golem awakens, vines and flowers sprouting from the crevices in its body." ], inputs=[prompt], outputs=[output], fn=run_hidiffusion) btn.click(fn=run_hidiffusion, inputs=[prompt, negative_prompt], outputs=[output]) btn_15.click(fn=run_hidiffusion, inputs=[prompt_15, negative_prompt_15], outputs=[output]) demo.launch()