import torch import numpy as np def get_alpha(alphas_cumprod, timestep): timestep_lt_zero_mask = torch.lt(timestep, 0).to(alphas_cumprod.dtype) normal_alpha = alphas_cumprod[torch.clip(timestep, 0)] one_alpha = torch.ones_like(normal_alpha).to(normal_alpha.dtype).to(normal_alpha.dtype) return normal_alpha * (1 - timestep_lt_zero_mask) + one_alpha * timestep_lt_zero_mask def psuedo_velocity_wrt_noisy_and_timestep(noisy_images, noisy_images_pre, alphas_cumprod, timestep, timestep_prev): alpha_prod_t = get_alpha(alphas_cumprod, timestep).view(-1, 1, 1, 1, 1).detach() beta_prod_t = 1 - alpha_prod_t alpha_prod_t_prev = get_alpha(alphas_cumprod, timestep_prev).view(-1, 1, 1, 1, 1).detach() beta_prod_t_prev = 1 - alpha_prod_t_prev a_s = (alpha_prod_t_prev ** (0.5)).to(noisy_images.dtype) a_t = (alpha_prod_t ** (0.5)).to(noisy_images.dtype) b_s = (beta_prod_t_prev ** (0.5)).to(noisy_images.dtype) b_t = (beta_prod_t ** (0.5)).to(noisy_images.dtype) psuedo_velocity = (noisy_images_pre - ( a_s * a_t + b_s * b_t ) * noisy_images) / ( b_s * a_t - a_s * b_t ) return psuedo_velocity def origin_by_velocity_and_sample(velocity, noisy_images, alphas_cumprod, timestep): alpha_prod_t = get_alpha(alphas_cumprod, timestep).view(-1, 1, 1, 1, 1).detach() beta_prod_t = 1 - alpha_prod_t a_t = (alpha_prod_t ** (0.5)).to(noisy_images.dtype) b_t = (beta_prod_t ** (0.5)).to(noisy_images.dtype) pred_original_sample = a_t * noisy_images - b_t * velocity return pred_original_sample