import streamlit as st import pandas as pd import numpy as np import tensorflow from tensorflow.keras.models import load_model import datetime import pickle # Load All Files with open('final_pipeline.pkl', 'rb') as file_1: model_pipeline = pickle.load(file_1) model_ann = load_model('churn_model.h5') # bikin fungsi def run(): with st.form(key='churn_data'): user_id = st.text_input('User ID', value='') age = st.number_input('Age', min_value=10, max_value=70, value=25, help='Customer Age') gender = st.selectbox('Gender', ('F','M'), index=1, help='M = Male F= Female') region_category = st.selectbox('Region category', ('Town','Village','City'), index=1) membership_category = st.selectbox('Membership', ('No Membership','Basic Membership','Silver Membership', 'Gold Membership','Platinum Membership','Premium Membership'), index=1) joining_date = st.date_input('Joining date',datetime.date(2019, 7, 6)) joined_through_referral = st.selectbox('Join using referral', ('Yes','No'), index=1) preferred_offer_types = st.selectbox('preferred offer', ('Gift Vouchers/Coupons','Without Offers','Credit/Debit Card Offers'), index=1) medium_of_operation = st.selectbox('device ', ('Desktop','Smartphone','Both'), index=1) internet_option= st.selectbox('Internet', ('Mobile_data','Fiber_Optic','Wi-Fi'), index=1) days_since_last_login = st.number_input('How many days since last login', min_value=0, max_value=30, value=5) avg_time_spent = st.number_input('Avg time login', min_value=0, max_value=3000, value=5) avg_transaction_value = st.number_input('Avg transaction value', min_value=0, max_value=100000, value=1000) avg_frequency_login_days= st.number_input('Avg freq login', min_value=0, max_value=100, value=5) points_in_wallet= st.number_input('Avg time login', min_value=0, max_value=3000, value=50) used_special_discount = st.selectbox('Spesial discount', ('Yes','No'), index=1) offer_application_preference = st.selectbox('app preference', ('Yes','No'), index=1) past_complaint = st.selectbox('past complaint', ('Yes','No'), index=1) complaint_status = st.selectbox('Complain status', ('No Information Available','Not Applicable','Solved','Solved in Follow-up','Unsolved'), index=1) feedback = st.selectbox('Feedback customer', ('User Friendly Website','Too many ads','Reasonable Price','Quality Customer Care','Products always in Stock','Poor Website','Poor Product Quality','Poor Customer Service'), index=1) st.markdown('---') submitted = st.form_submit_button('Predict') data_inf = { 'user_id':user_id, 'age': age, 'gender':gender, 'region_category': region_category, 'membership_category': membership_category, 'joining_date': joining_date, 'joined_through_referral':joined_through_referral, 'preferred_offer_types': preferred_offer_types, 'medium_of_operation': medium_of_operation, 'internet_option': internet_option, 'days_since_last_login': days_since_last_login, 'avg_time_spent': avg_time_spent, 'avg_transaction_value': avg_transaction_value, 'avg_frequency_login_days': avg_frequency_login_days, 'points_in_wallet': points_in_wallet, 'used_special_discount': used_special_discount, 'offer_application_preference': offer_application_preference, 'past_complaint': past_complaint, 'complaint_status': complaint_status, 'feedback': feedback } data_inf = pd.DataFrame([data_inf]) # Create Binning frequency login bins = [-1, 10, 20, 30, 40, 50, 100] labels =[1,2,3,4,6,7] data_inf['binned_frequency_login'] = pd.cut(data_inf['avg_frequency_login_days'], bins,labels=labels).astype(float) st.dataframe(data_inf) if submitted: # transform data inference data_inf_transform = model_pipeline.transform(data_inf) # Predict using model ann y_pred_inf = model_ann.predict(data_inf_transform) y_pred_inf = np.where(y_pred_inf >= 0.5, 1, 0) if y_pred_inf.any() == 1: st.write('## The Customer will CHURN') else: st.write('## The Customer will NOT Churn') if __name__ == '__main__': run()