import torch import torch.nn as nn import torch.nn.functional as functional from models._util import try_index from .bn import ABN class DeeplabV3(nn.Module): def __init__(self, in_channels, out_channels, hidden_channels=256, dilations=(12, 24, 36), norm_act=ABN, pooling_size=None): super(DeeplabV3, self).__init__() self.pooling_size = pooling_size self.map_convs = nn.ModuleList([ nn.Conv2d(in_channels, hidden_channels, 1, bias=False), nn.Conv2d(in_channels, hidden_channels, 3, bias=False, dilation=dilations[0], padding=dilations[0]), nn.Conv2d(in_channels, hidden_channels, 3, bias=False, dilation=dilations[1], padding=dilations[1]), nn.Conv2d(in_channels, hidden_channels, 3, bias=False, dilation=dilations[2], padding=dilations[2]) ]) self.map_bn = norm_act(hidden_channels * 4) self.global_pooling_conv = nn.Conv2d(in_channels, hidden_channels, 1, bias=False) self.global_pooling_bn = norm_act(hidden_channels) self.red_conv = nn.Conv2d(hidden_channels * 4, out_channels, 1, bias=False) self.pool_red_conv = nn.Conv2d(hidden_channels, out_channels, 1, bias=False) self.red_bn = norm_act(out_channels) self.reset_parameters(self.map_bn.activation, self.map_bn.slope) def reset_parameters(self, activation, slope): gain = nn.init.calculate_gain(activation, slope) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.xavier_normal_(m.weight.data, gain) if hasattr(m, "bias") and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, ABN): if hasattr(m, "weight") and m.weight is not None: nn.init.constant_(m.weight, 1) if hasattr(m, "bias") and m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): # Map convolutions out = torch.cat([m(x) for m in self.map_convs], dim=1) out = self.map_bn(out) out = self.red_conv(out) # Global pooling pool = self._global_pooling(x) pool = self.global_pooling_conv(pool) pool = self.global_pooling_bn(pool) pool = self.pool_red_conv(pool) if self.training or self.pooling_size is None: pool = pool.repeat(1, 1, x.size(2), x.size(3)) out += pool out = self.red_bn(out) return out def _global_pooling(self, x): if self.training or self.pooling_size is None: pool = x.view(x.size(0), x.size(1), -1).mean(dim=-1) pool = pool.view(x.size(0), x.size(1), 1, 1) else: pooling_size = (min(try_index(self.pooling_size, 0), x.shape[2]), min(try_index(self.pooling_size, 1), x.shape[3])) padding = ( (pooling_size[1] - 1) // 2, (pooling_size[1] - 1) // 2 if pooling_size[1] % 2 == 1 else (pooling_size[1] - 1) // 2 + 1, (pooling_size[0] - 1) // 2, (pooling_size[0] - 1) // 2 if pooling_size[0] % 2 == 1 else (pooling_size[0] - 1) // 2 + 1 ) pool = functional.avg_pool2d(x, pooling_size, stride=1) pool = functional.pad(pool, pad=padding, mode="replicate") return pool