from functools import partial from typing import Optional, Tuple, Union import jittor as jt import jittor.nn as nn from jittor import Module from .utils import NewGELUActivation from .utils import (fixed_pos_embedding, apply_rotary_pos_emb, _init_weights, get_head_mask) class MossAttention(Module): def __init__(self, config): super(MossAttention, self).__init__() max_positions = config.n_positions self.register_buffer( "causal_mask", jt.tril(jt.ones((max_positions, max_positions), dtype=jt.bool)).view( 1, 1, max_positions, max_positions ), ) self.attn_dropout = nn.Dropout(config.attn_pdrop) self.resid_dropout = nn.Dropout(config.resid_pdrop) self.embed_dim = config.n_embd self.num_attention_heads = config.n_head self.head_dim = self.embed_dim // self.num_attention_heads if self.head_dim * self.num_attention_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and" f" `num_attention_heads`: {self.num_attention_heads})." ) self.scale_attn = jt.sqrt(jt.float32(self.head_dim)) self.qkv_proj = nn.Linear(self.embed_dim, self.embed_dim * 3, bias=False) jt.float16 self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) self.rotary_dim = None if config.rotary_dim is not None: self.rotary_dim = config.rotary_dim def _split_heads(self, x, n_head, dim_head, mp_num): reshaped = x.reshape(x.shape[:-1] + (n_head // mp_num, dim_head)) reshaped = reshaped.reshape(x.shape[:-2] + (-1,) + reshaped.shape[-1:]) return reshaped def _merge_heads(self, tensor, num_attention_heads, attn_head_size): """ Merges attn_head_size dim and num_attn_heads dim into n_ctx """ if len(tensor.shape) == 5: tensor = tensor.permute(0, 1, 3, 2, 4).contiguous() elif len(tensor.shape) == 4: tensor = tensor.permute(0, 2, 1, 3).contiguous() else: raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}") new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,) return tensor.view(new_shape) def _attn( self, query, key, value, attention_mask=None, head_mask=None, ): # compute causal mask from causal mask buffer query_length, key_length = query.size(-2), key.size(-2) causal_mask = self.causal_mask[:, :, key_length - query_length : key_length, :key_length] # Keep the attention weights computation in fp32 to avoid overflow issues query = query.to('float32') key = key.to('float32') attn_weights = jt.matmul(query, key.transpose(-1, -2)) attn_weights = attn_weights / self.scale_attn mask_value = -3.4e38 # torch.finfo(attn_weights.dtype).min) mask_value = jt.Var(mask_value).type_as(attn_weights) attn_weights = jt.where(causal_mask, attn_weights, mask_value) if attention_mask is not None: # Apply the attention mask attn_weights = attn_weights + attention_mask attn_weights = nn.Softmax(dim=-1)(attn_weights) attn_weights = attn_weights.to(value.dtype) attn_weights = self.attn_dropout(attn_weights) # Mask heads if we want to if head_mask is not None: attn_weights = attn_weights * head_mask attn_output = jt.matmul(attn_weights, value.float()) if jt.flags.amp_level >= 1: attn_output = attn_output.half() return attn_output, attn_weights def execute( self, hidden_states: Optional[jt.Var], attention_mask: Optional[jt.Var] = None, layer_past: Optional[Tuple[jt.Var]] = None, head_mask: Optional[jt.Var] = None, use_cache: Optional[bool] = False, ) -> Union[ Tuple[jt.Var, Tuple[jt.Var]], Optional[Tuple[jt.Var, Tuple[jt.Var], Tuple[jt.Var, ...]]], ]: qkv = self.qkv_proj(hidden_states) mp_num = 4 qkv_split = qkv.reshape(qkv.shape[:-1] + (mp_num, -1)) local_dim = self.head_dim * self.num_attention_heads // mp_num query, value, key = jt.split(qkv_split, local_dim, dim=-1) query = self._split_heads(query, self.num_attention_heads, self.head_dim, mp_num=mp_num) key = self._split_heads(key, self.num_attention_heads, self.head_dim, mp_num=mp_num) value = self._split_heads(value, self.num_attention_heads, self.head_dim, mp_num=mp_num) value = value.permute(0, 2, 1, 3) seq_len = key.shape[1] offset = 0 if layer_past is not None: offset = layer_past[0].shape[-2] seq_len += offset if self.rotary_dim is not None: k_rot = key[:, :, :, : self.rotary_dim] k_pass = key[:, :, :, self.rotary_dim :] q_rot = query[:, :, :, : self.rotary_dim] q_pass = query[:, :, :, self.rotary_dim :] sincos = fixed_pos_embedding(k_rot, 1, seq_len=seq_len) k_rot = apply_rotary_pos_emb(k_rot, sincos, offset=offset) q_rot = apply_rotary_pos_emb(q_rot, sincos, offset=offset) key = jt.cat([k_rot, k_pass], dim=-1) query = jt.cat([q_rot, q_pass], dim=-1) else: sincos = fixed_pos_embedding(key, 1, seq_len=seq_len) key = apply_rotary_pos_emb(key, sincos, offset=offset) query = apply_rotary_pos_emb(query, sincos, offset=offset) key = key.permute(0, 2, 1, 3) query = query.permute(0, 2, 1, 3) if layer_past is not None: past_key = layer_past[0] past_value = layer_past[1] key = jt.cat((past_key, key), dim=-2) value = jt.cat((past_value, value), dim=-2) if use_cache is True: present = (key, value) else: present = None # compute self-attention: V x Softmax(QK^T) attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask) attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim) attn_output = self.out_proj(attn_output) attn_output = self.resid_dropout(attn_output) outputs = (attn_output, present) return outputs # a, present class MossMLP(Module): def __init__(self, intermediate_size, config): # in MLP: intermediate_size= 4 * embed_dim super(MossMLP, self).__init__() embed_dim = config.n_embd self.fc_in = nn.Linear(embed_dim, intermediate_size) self.fc_out = nn.Linear(intermediate_size, embed_dim) self.act = NewGELUActivation() self.dropout = nn.Dropout(config.resid_pdrop) def execute(self, hidden_states: Optional[jt.Var]) -> jt.Var: hidden_states = self.fc_in(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.fc_out(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class MossBlock(Module): def __init__(self, config): super(MossBlock, self).__init__() self.config = config inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) self.attn = MossAttention(config) self.mlp = MossMLP(inner_dim, config) def execute( self, hidden_states: Optional[jt.Var], layer_past: Optional[Tuple[jt.Var]] = None, attention_mask: Optional[jt.Var] = None, head_mask: Optional[jt.Var] = None, use_cache: Optional[bool] = False, ) -> Union[Tuple[jt.Var], Optional[Tuple[jt.Var, Tuple[jt.Var, ...]]]]: residual = hidden_states hidden_states = self.ln_1(hidden_states) attn_outputs = self.attn( hidden_states, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask, use_cache=use_cache ) attn_output = attn_outputs[0] # output_attn: a, present outputs = attn_outputs[1:] feed_forward_hidden_states = self.mlp(hidden_states) hidden_states = attn_output + feed_forward_hidden_states + residual if use_cache: outputs = (hidden_states,) + outputs else: outputs = (hidden_states,) + outputs[1:] return outputs # hidden_states, present class MossModel(Module): def __init__(self, config): super(MossModel, self).__init__() self.config = config self.embed_dim = config.n_embd self.vocab_size = config.vocab_size self.wte = nn.Embedding(config.vocab_size, self.embed_dim) self.drop = nn.Dropout(config.embd_pdrop) self.h = nn.ModuleList([MossBlock(config) for _ in range(config.n_layer)]) self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) self.rotary_dim = min(config.rotary_dim, config.n_ctx // config.n_head) self.gradient_checkpointing = False self.apply(partial(_init_weights, config)) def execute( self, input_ids: Optional[jt.Var] = None, past_key_values: Optional[Tuple[Tuple[jt.Var]]] = None, attention_mask: Optional[jt.Var] = None, token_type_ids: Optional[jt.Var] = None, position_ids: Optional[jt.Var] = None, head_mask: Optional[jt.Var] = None, inputs_embeds: Optional[jt.Var] = None, use_cache: Optional[bool] = None, ): use_cache = use_cache if use_cache is not None else self.config.use_cache if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) batch_size = input_ids.shape[0] elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size = inputs_embeds.shape[0] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if token_type_ids is not None: token_type_ids = token_type_ids.view(-1, input_shape[-1]) if position_ids is not None: position_ids = position_ids.view(-1, input_shape[-1]) if past_key_values is None: past_length = 0 past_key_values = tuple([None] * len(self.h)) else: past_length = past_key_values[0][0].size(-2) if position_ids is None: position_ids = jt.arange(past_length, input_shape[-1] + past_length, dtype='int64') position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) # Attention mask. if attention_mask is not None: if batch_size <= 0: raise ValueError("batch_size has to be defined and > 0") attention_mask = attention_mask.view(batch_size, -1) # [batch_size, 1, 1, to_seq_length] attention_mask = attention_mask[:, None, None, :] if jt.flags.amp_level >= 3: attention_mask = attention_mask.half() # fp16 compatibility attention_mask = (1.0 - attention_mask) * -65504.0 else: # finfo.min attention_mask = (1.0 - attention_mask) * -3.402e38 # n_layer x batch x num_attention_heads x N x N head_mask = get_head_mask(head_mask, self.config.n_layer) if inputs_embeds is None: inputs_embeds = self.wte(input_ids) hidden_states = inputs_embeds if token_type_ids is not None: token_type_embeds = self.wte(token_type_ids) hidden_states = hidden_states + token_type_embeds hidden_states = self.drop(hidden_states) output_shape = input_shape + (hidden_states.size(-1),) presents = () if use_cache else None for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): outputs = block( hidden_states, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask[i], use_cache=use_cache, ) hidden_states = outputs[0] if use_cache is True: presents = presents + (outputs[1],) hidden_states = self.ln_f(hidden_states) hidden_states = hidden_states.view(output_shape) return hidden_states, presents class MossForCausalLM(Module): def __init__(self, config): super(MossForCausalLM, self).__init__() self.config = config self.transformer = MossModel(config) self.lm_head = nn.Linear(config.n_embd, config.vocab_size) # Initialize weights and apply final processing self.apply(partial(_init_weights, config)) def execute( self, input_ids: Optional[jt.Var] = None, past_key_values: Optional[Tuple[Tuple[jt.Var]]] = None, attention_mask: Optional[jt.Var] = None, token_type_ids: Optional[jt.Var] = None, position_ids: Optional[jt.Var] = None, head_mask: Optional[jt.Var] = None, inputs_embeds: Optional[jt.Var] = None, labels: Optional[jt.Var] = None, use_cache: Optional[bool] = None, ): hidden_states, presents = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, ) lm_logits = self.lm_head(hidden_states).to('float32') loss = None if labels is not None: shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() loss_fct = nn.CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) loss = loss.to(hidden_states.dtype) return dict( loss=loss, logits=lm_logits, past_key_values=presents )