import gradio as gr import cv2 from scenedetect import open_video, SceneManager from scenedetect.detectors import ContentDetector #from scenedetect.video_splitter import split_video_ffmpeg from moviepy.video.io.ffmpeg_tools import ffmpeg_extract_subclip outputs = ["json", "file", "gallery"] data_outputs = [] def fn(list): return tuple(list); def save_frame(video_path, start_frame): vid = cv2.VideoCapture(video_path) for i in range(start_frame, 1): vid.set(1, i) ret, still = vid.read() output_image = cv2.imwrite(f'{video_path}_frame{i}.jpg', still) return output_image def find_scenes(video_path, threshold=27.0): # Open our video, create a scene manager, and add a detector. video = open_video(video_path) scene_manager = SceneManager() scene_manager.add_detector( ContentDetector(threshold=threshold)) scene_manager.detect_scenes(video, show_progress=True) scene_list = scene_manager.get_scene_list() #outputs.append("json") data_outputs.append(scene_list) #print(scene_list) shots = [] images_outputs = [] for i, scene in enumerate(scene_list): shot_in = scene[0].get_frames() / scene[0].get_framerate() shot_out = (scene[1].get_frames() - 1) / scene[0].get_framerate() target_name = str(i)+"_cut.mp4" ffmpeg_extract_subclip(video_path, shot_in, shot_out, targetname=target_name) data_outputs.append(target_name) shots.append(target_name) img = save_frame(video_path, scene[0].get_frames()) images_outputs.append(img) #outputs.append("video") #shot_in = scene_list[1][0].get_frames() / scene_list[1][0].get_framerate() #shot_out = (scene_list[1][1].get_frames() - 1) / scene_list[1][0].get_framerate() #print(shot_in, shot_out) results = fn(data_outputs) print(results) #ffmpeg_extract_subclip(video_path, shot_in, shot_out, targetname="cut.mp4") return scene_list, shots, images_outputs video_input=gr.Video(source="upload", format="mp4"); gr.Interface(fn=find_scenes, inputs=video_input, outputs=outputs).launch()