# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. """Meters.""" import datetime import numpy as np import os from collections import defaultdict, deque import torch from fvcore.common.timer import Timer from sklearn.metrics import average_precision_score import timesformer.utils.logging as logging import timesformer.utils.metrics as metrics import timesformer.utils.misc as misc logger = logging.get_logger(__name__) class TestMeter(object): """ Perform the multi-view ensemble for testing: each video with an unique index will be sampled with multiple clips, and the predictions of the clips will be aggregated to produce the final prediction for the video. The accuracy is calculated with the given ground truth labels. """ def __init__( self, num_videos, num_clips, num_cls, overall_iters, multi_label=False, ensemble_method="sum", ): """ Construct tensors to store the predictions and labels. Expect to get num_clips predictions from each video, and calculate the metrics on num_videos videos. Args: num_videos (int): number of videos to test. num_clips (int): number of clips sampled from each video for aggregating the final prediction for the video. num_cls (int): number of classes for each prediction. overall_iters (int): overall iterations for testing. multi_label (bool): if True, use map as the metric. ensemble_method (str): method to perform the ensemble, options include "sum", and "max". """ self.iter_timer = Timer() self.data_timer = Timer() self.net_timer = Timer() self.num_clips = num_clips self.overall_iters = overall_iters self.multi_label = multi_label self.ensemble_method = ensemble_method # Initialize tensors. self.video_preds = torch.zeros((num_videos, num_cls)) if multi_label: self.video_preds -= 1e10 self.video_labels = ( torch.zeros((num_videos, num_cls)) if multi_label else torch.zeros((num_videos)).long() ) self.clip_count = torch.zeros((num_videos)).long() self.topk_accs = [] self.stats = {} # Reset metric. self.reset() def reset(self): """ Reset the metric. """ self.clip_count.zero_() self.video_preds.zero_() if self.multi_label: self.video_preds -= 1e10 self.video_labels.zero_() def update_stats(self, preds, labels, clip_ids): """ Collect the predictions from the current batch and perform on-the-flight summation as ensemble. Args: preds (tensor): predictions from the current batch. Dimension is N x C where N is the batch size and C is the channel size (num_cls). labels (tensor): the corresponding labels of the current batch. Dimension is N. clip_ids (tensor): clip indexes of the current batch, dimension is N. """ for ind in range(preds.shape[0]): vid_id = int(clip_ids[ind]) // self.num_clips if self.video_labels[vid_id].sum() > 0: assert torch.equal( self.video_labels[vid_id].type(torch.FloatTensor), labels[ind].type(torch.FloatTensor), ) self.video_labels[vid_id] = labels[ind] if self.ensemble_method == "sum": self.video_preds[vid_id] += preds[ind] elif self.ensemble_method == "max": self.video_preds[vid_id] = torch.max( self.video_preds[vid_id], preds[ind] ) else: raise NotImplementedError( "Ensemble Method {} is not supported".format( self.ensemble_method ) ) self.clip_count[vid_id] += 1 def log_iter_stats(self, cur_iter): """ Log the stats. Args: cur_iter (int): the current iteration of testing. """ eta_sec = self.iter_timer.seconds() * (self.overall_iters - cur_iter) eta = str(datetime.timedelta(seconds=int(eta_sec))) stats = { "split": "test_iter", "cur_iter": "{}".format(cur_iter + 1), "eta": eta, "time_diff": self.iter_timer.seconds(), } logging.log_json_stats(stats) def iter_tic(self): """ Start to record time. """ self.iter_timer.reset() self.data_timer.reset() def iter_toc(self): """ Stop to record time. """ self.iter_timer.pause() self.net_timer.pause() def data_toc(self): self.data_timer.pause() self.net_timer.reset() def finalize_metrics(self, ks=(1, 5)): """ Calculate and log the final ensembled metrics. ks (tuple): list of top-k values for topk_accuracies. For example, ks = (1, 5) correspods to top-1 and top-5 accuracy. """ if not all(self.clip_count == self.num_clips): logger.warning( "clip count {} ~= num clips {}".format( ", ".join( [ "{}: {}".format(i, k) for i, k in enumerate(self.clip_count.tolist()) ] ), self.num_clips, ) ) self.stats = {"split": "test_final"} if self.multi_label: map = get_map( self.video_preds.cpu().numpy(), self.video_labels.cpu().numpy() ) self.stats["map"] = map else: num_topks_correct = metrics.topks_correct( self.video_preds, self.video_labels, ks ) topks = [ (x / self.video_preds.size(0)) * 100.0 for x in num_topks_correct ] assert len({len(ks), len(topks)}) == 1 for k, topk in zip(ks, topks): self.stats["top{}_acc".format(k)] = "{:.{prec}f}".format( topk, prec=2 ) logging.log_json_stats(self.stats) class ScalarMeter(object): """ A scalar meter uses a deque to track a series of scaler values with a given window size. It supports calculating the median and average values of the window, and also supports calculating the global average. """ def __init__(self, window_size): """ Args: window_size (int): size of the max length of the deque. """ self.deque = deque(maxlen=window_size) self.total = 0.0 self.count = 0 def reset(self): """ Reset the deque. """ self.deque.clear() self.total = 0.0 self.count = 0 def add_value(self, value): """ Add a new scalar value to the deque. """ self.deque.append(value) self.count += 1 self.total += value def get_win_median(self): """ Calculate the current median value of the deque. """ return np.median(self.deque) def get_win_avg(self): """ Calculate the current average value of the deque. """ return np.mean(self.deque) def get_global_avg(self): """ Calculate the global mean value. """ return self.total / self.count class TrainMeter(object): """ Measure training stats. """ def __init__(self, epoch_iters, cfg): """ Args: epoch_iters (int): the overall number of iterations of one epoch. cfg (CfgNode): configs. """ self._cfg = cfg self.epoch_iters = epoch_iters self.MAX_EPOCH = cfg.SOLVER.MAX_EPOCH * epoch_iters self.iter_timer = Timer() self.data_timer = Timer() self.net_timer = Timer() self.loss = ScalarMeter(cfg.LOG_PERIOD) self.loss_total = 0.0 self.lr = None # Current minibatch errors (smoothed over a window). self.mb_top1_err = ScalarMeter(cfg.LOG_PERIOD) self.mb_top5_err = ScalarMeter(cfg.LOG_PERIOD) # Number of misclassified examples. self.num_top1_mis = 0 self.num_top5_mis = 0 self.num_samples = 0 self.output_dir = cfg.OUTPUT_DIR self.extra_stats = {} self.extra_stats_total = {} self.log_period = cfg.LOG_PERIOD def reset(self): """ Reset the Meter. """ self.loss.reset() self.loss_total = 0.0 self.lr = None self.mb_top1_err.reset() self.mb_top5_err.reset() self.num_top1_mis = 0 self.num_top5_mis = 0 self.num_samples = 0 for key in self.extra_stats.keys(): self.extra_stats[key].reset() self.extra_stats_total[key] = 0.0 def iter_tic(self): """ Start to record time. """ self.iter_timer.reset() self.data_timer.reset() def iter_toc(self): """ Stop to record time. """ self.iter_timer.pause() self.net_timer.pause() def data_toc(self): self.data_timer.pause() self.net_timer.reset() def update_stats(self, top1_err, top5_err, loss, lr, mb_size, stats={}): """ Update the current stats. Args: top1_err (float): top1 error rate. top5_err (float): top5 error rate. loss (float): loss value. lr (float): learning rate. mb_size (int): mini batch size. """ self.loss.add_value(loss) self.lr = lr self.loss_total += loss * mb_size self.num_samples += mb_size if not self._cfg.DATA.MULTI_LABEL: # Current minibatch stats self.mb_top1_err.add_value(top1_err) self.mb_top5_err.add_value(top5_err) # Aggregate stats self.num_top1_mis += top1_err * mb_size self.num_top5_mis += top5_err * mb_size for key in stats.keys(): if key not in self.extra_stats: self.extra_stats[key] = ScalarMeter(self.log_period) self.extra_stats_total[key] = 0.0 self.extra_stats[key].add_value(stats[key]) self.extra_stats_total[key] += stats[key] * mb_size def log_iter_stats(self, cur_epoch, cur_iter): """ log the stats of the current iteration. Args: cur_epoch (int): the number of current epoch. cur_iter (int): the number of current iteration. """ if (cur_iter + 1) % self._cfg.LOG_PERIOD != 0: return eta_sec = self.iter_timer.seconds() * ( self.MAX_EPOCH - (cur_epoch * self.epoch_iters + cur_iter + 1) ) eta = str(datetime.timedelta(seconds=int(eta_sec))) stats = { "_type": "train_iter", "epoch": "{}/{}".format(cur_epoch + 1, self._cfg.SOLVER.MAX_EPOCH), "iter": "{}/{}".format(cur_iter + 1, self.epoch_iters), "dt": self.iter_timer.seconds(), "dt_data": self.data_timer.seconds(), "dt_net": self.net_timer.seconds(), "eta": eta, "loss": self.loss.get_win_median(), "lr": self.lr, "gpu_mem": "{:.2f}G".format(misc.gpu_mem_usage()), } if not self._cfg.DATA.MULTI_LABEL: stats["top1_err"] = self.mb_top1_err.get_win_median() stats["top5_err"] = self.mb_top5_err.get_win_median() for key in self.extra_stats.keys(): stats[key] = self.extra_stats_total[key] / self.num_samples logging.log_json_stats(stats) def log_epoch_stats(self, cur_epoch): """ Log the stats of the current epoch. Args: cur_epoch (int): the number of current epoch. """ eta_sec = self.iter_timer.seconds() * ( self.MAX_EPOCH - (cur_epoch + 1) * self.epoch_iters ) eta = str(datetime.timedelta(seconds=int(eta_sec))) stats = { "_type": "train_epoch", "epoch": "{}/{}".format(cur_epoch + 1, self._cfg.SOLVER.MAX_EPOCH), "dt": self.iter_timer.seconds(), "dt_data": self.data_timer.seconds(), "dt_net": self.net_timer.seconds(), "eta": eta, "lr": self.lr, "gpu_mem": "{:.2f}G".format(misc.gpu_mem_usage()), "RAM": "{:.2f}/{:.2f}G".format(*misc.cpu_mem_usage()), } if not self._cfg.DATA.MULTI_LABEL: top1_err = self.num_top1_mis / self.num_samples top5_err = self.num_top5_mis / self.num_samples avg_loss = self.loss_total / self.num_samples stats["top1_err"] = top1_err stats["top5_err"] = top5_err stats["loss"] = avg_loss for key in self.extra_stats.keys(): stats[key] = self.extra_stats_total[key] / self.num_samples logging.log_json_stats(stats) class ValMeter(object): """ Measures validation stats. """ def __init__(self, max_iter, cfg): """ Args: max_iter (int): the max number of iteration of the current epoch. cfg (CfgNode): configs. """ self._cfg = cfg self.max_iter = max_iter self.iter_timer = Timer() self.data_timer = Timer() self.net_timer = Timer() # Current minibatch errors (smoothed over a window). self.mb_top1_err = ScalarMeter(cfg.LOG_PERIOD) self.mb_top5_err = ScalarMeter(cfg.LOG_PERIOD) # Min errors (over the full val set). self.min_top1_err = 100.0 self.min_top5_err = 100.0 # Number of misclassified examples. self.num_top1_mis = 0 self.num_top5_mis = 0 self.num_samples = 0 self.all_preds = [] self.all_labels = [] self.output_dir = cfg.OUTPUT_DIR self.extra_stats = {} self.extra_stats_total = {} self.log_period = cfg.LOG_PERIOD def reset(self): """ Reset the Meter. """ self.iter_timer.reset() self.mb_top1_err.reset() self.mb_top5_err.reset() self.num_top1_mis = 0 self.num_top5_mis = 0 self.num_samples = 0 self.all_preds = [] self.all_labels = [] for key in self.extra_stats.keys(): self.extra_stats[key].reset() self.extra_stats_total[key] = 0.0 def iter_tic(self): """ Start to record time. """ self.iter_timer.reset() self.data_timer.reset() def iter_toc(self): """ Stop to record time. """ self.iter_timer.pause() self.net_timer.pause() def data_toc(self): self.data_timer.pause() self.net_timer.reset() def update_stats(self, top1_err, top5_err, mb_size, stats={}): """ Update the current stats. Args: top1_err (float): top1 error rate. top5_err (float): top5 error rate. mb_size (int): mini batch size. """ self.mb_top1_err.add_value(top1_err) self.mb_top5_err.add_value(top5_err) self.num_top1_mis += top1_err * mb_size self.num_top5_mis += top5_err * mb_size self.num_samples += mb_size for key in stats.keys(): if key not in self.extra_stats: self.extra_stats[key] = ScalarMeter(self.log_period) self.extra_stats_total[key] = 0.0 self.extra_stats[key].add_value(stats[key]) self.extra_stats_total[key] += stats[key] * mb_size def update_predictions(self, preds, labels): """ Update predictions and labels. Args: preds (tensor): model output predictions. labels (tensor): labels. """ # TODO: merge update_prediction with update_stats. self.all_preds.append(preds) self.all_labels.append(labels) def log_iter_stats(self, cur_epoch, cur_iter): """ log the stats of the current iteration. Args: cur_epoch (int): the number of current epoch. cur_iter (int): the number of current iteration. """ if (cur_iter + 1) % self._cfg.LOG_PERIOD != 0: return eta_sec = self.iter_timer.seconds() * (self.max_iter - cur_iter - 1) eta = str(datetime.timedelta(seconds=int(eta_sec))) stats = { "_type": "val_iter", "epoch": "{}/{}".format(cur_epoch + 1, self._cfg.SOLVER.MAX_EPOCH), "iter": "{}/{}".format(cur_iter + 1, self.max_iter), "time_diff": self.iter_timer.seconds(), "eta": eta, "gpu_mem": "{:.2f}G".format(misc.gpu_mem_usage()), } if not self._cfg.DATA.MULTI_LABEL: stats["top1_err"] = self.mb_top1_err.get_win_median() stats["top5_err"] = self.mb_top5_err.get_win_median() for key in self.extra_stats.keys(): stats[key] = self.extra_stats[key].get_win_median() logging.log_json_stats(stats) def log_epoch_stats(self, cur_epoch): """ Log the stats of the current epoch. Args: cur_epoch (int): the number of current epoch. """ stats = { "_type": "val_epoch", "epoch": "{}/{}".format(cur_epoch + 1, self._cfg.SOLVER.MAX_EPOCH), "time_diff": self.iter_timer.seconds(), "gpu_mem": "{:.2f}G".format(misc.gpu_mem_usage()), "RAM": "{:.2f}/{:.2f}G".format(*misc.cpu_mem_usage()), } if self._cfg.DATA.MULTI_LABEL: stats["map"] = get_map( torch.cat(self.all_preds).cpu().numpy(), torch.cat(self.all_labels).cpu().numpy(), ) else: top1_err = self.num_top1_mis / self.num_samples top5_err = self.num_top5_mis / self.num_samples self.min_top1_err = min(self.min_top1_err, top1_err) self.min_top5_err = min(self.min_top5_err, top5_err) stats["top1_err"] = top1_err stats["top5_err"] = top5_err stats["min_top1_err"] = self.min_top1_err stats["min_top5_err"] = self.min_top5_err for key in self.extra_stats.keys(): stats[key] = self.extra_stats_total[key] / self.num_samples logging.log_json_stats(stats) def get_map(preds, labels): """ Compute mAP for multi-label case. Args: preds (numpy tensor): num_examples x num_classes. labels (numpy tensor): num_examples x num_classes. Returns: mean_ap (int): final mAP score. """ logger.info("Getting mAP for {} examples".format(preds.shape[0])) preds = preds[:, ~(np.all(labels == 0, axis=0))] labels = labels[:, ~(np.all(labels == 0, axis=0))] aps = [0] try: aps = average_precision_score(labels, preds, average=None) except ValueError: print( "Average precision requires a sufficient number of samples \ in a batch which are missing in this sample." ) mean_ap = np.mean(aps) return mean_ap