import numpy as np import io import os import time from collections import defaultdict, deque import datetime import torch import torch.distributed as dist def optimizer_to(optim, device): for param in optim.state.values(): # Not sure there are any global tensors in the state dict if isinstance(param, torch.Tensor): param.data = param.data.to(device) if param._grad is not None: param._grad.data = param._grad.data.to(device) elif isinstance(param, dict): for subparam in param.values(): if isinstance(subparam, torch.Tensor): subparam.data = subparam.data.to(device) if subparam._grad is not None: subparam._grad.data = subparam._grad.data.to(device) class SmoothedValue(object): """Track a series of values and provide access to smoothed values over a window or the global series average. """ def __init__(self, window_size=20, fmt=None): if fmt is None: fmt = "{median:.4f} ({global_avg:.4f})" self.deque = deque(maxlen=window_size) self.total = 0.0 self.count = 0 self.fmt = fmt def update(self, value, n=1): self.deque.append(value) self.count += n self.total += value * n def synchronize_between_processes(self): """ Warning: does not synchronize the deque! """ if not is_dist_avail_and_initialized(): return t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') dist.barrier() dist.all_reduce(t) t = t.tolist() self.count = int(t[0]) self.total = t[1] @property def median(self): d = torch.tensor(list(self.deque)) return d.median().item() @property def avg(self): d = torch.tensor(list(self.deque), dtype=torch.float32) return d.mean().item() @property def global_avg(self): return self.total / self.count @property def max(self): return max(self.deque) @property def value(self): return self.deque[-1] def __str__(self): return self.fmt.format( median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value) class MetricLogger(object): def __init__(self, delimiter="\t", accelerator=None): self.meters = defaultdict(SmoothedValue) self.delimiter = delimiter self.accelerator = accelerator def update(self, **kwargs): for k, v in kwargs.items(): if isinstance(v, torch.Tensor): v = v.item() assert isinstance(v, (float, int)) self.meters[k].update(v) def __getattr__(self, attr): if attr in self.meters: return self.meters[attr] if attr in self.__dict__: return self.__dict__[attr] raise AttributeError("'{}' object has no attribute '{}'".format( type(self).__name__, attr)) def __str__(self): loss_str = [] for name, meter in self.meters.items(): loss_str.append( "{}: {}".format(name, str(meter)) ) return self.delimiter.join(loss_str) def global_avg(self): loss_str = [] for name, meter in self.meters.items(): loss_str.append( "{}: {:.4f}".format(name, meter.global_avg) ) return self.delimiter.join(loss_str) def synchronize_between_processes(self): for meter in self.meters.values(): meter.synchronize_between_processes() def add_meter(self, name, meter): self.meters[name] = meter def log_every(self, iterable, print_freq, header=None): i = 0 if not header: header = '' start_time = time.time() end = time.time() iter_time = SmoothedValue(fmt='{avg:.4f}') data_time = SmoothedValue(fmt='{avg:.4f}') space_fmt = ':' + str(len(str(len(iterable)))) + 'd' log_msg = [ header, '[{0' + space_fmt + '}/{1}]', 'eta: {eta}', '{meters}', 'time: {time}', 'data: {data}' ] if torch.cuda.is_available(): log_msg.append('max mem: {memory:.0f}') log_msg = self.delimiter.join(log_msg) MB = 1024.0 * 1024.0 if self.accelerator is not None: print_func = self.accelerator.print else: print_func = print for obj in iterable: data_time.update(time.time() - end) yield obj iter_time.update(time.time() - end) if i % print_freq == 0 or i == len(iterable) - 1: eta_seconds = iter_time.global_avg * (len(iterable) - i) eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) if torch.cuda.is_available(): print_func(log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), memory=torch.cuda.max_memory_allocated() / MB)) else: print_func(log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time))) i += 1 end = time.time() total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print_func('{} Total time: {} ({:.4f} s / it)'.format( header, total_time_str, total_time / len(iterable))) class AttrDict(dict): def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self def compute_acc(logits, label, reduction='mean'): ret = (torch.argmax(logits, dim=1) == label).float() if reduction == 'none': return ret.detach() elif reduction == 'mean': return ret.mean().item() def compute_n_params(model, return_str=True): tot = 0 for p in model.parameters(): w = 1 for x in p.shape: w *= x tot += w if return_str: if tot >= 1e6: return '{:.1f}M'.format(tot / 1e6) else: return '{:.1f}K'.format(tot / 1e3) else: return tot def setup_for_distributed(is_master): """ This function disables printing when not in master process """ import builtins as __builtin__ builtin_print = __builtin__.print def print(*args, **kwargs): force = kwargs.pop('force', False) if is_master or force: builtin_print(*args, **kwargs) __builtin__.print = print def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True def get_world_size(): if not is_dist_avail_and_initialized(): return 1 return dist.get_world_size() def get_rank(): if not is_dist_avail_and_initialized(): return 0 return dist.get_rank() def is_main_process(): return get_rank() == 0 def save_on_master(*args, **kwargs): if is_main_process(): torch.save(*args, **kwargs) def init_distributed_mode(args): if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: args.rank = int(os.environ["RANK"]) args.world_size = int(os.environ['WORLD_SIZE']) args.gpu = int(os.environ['LOCAL_RANK']) elif 'SLURM_PROCID' in os.environ: args.rank = int(os.environ['SLURM_PROCID']) args.gpu = args.rank % torch.cuda.device_count() print(args.gpu, os.environ['SLURM_LOCALID'], os.environ['SLURM_JOB_NODELIST'], os.environ['SLURM_STEP_GPUS']) else: print('Not using distributed mode') args.distributed = False return args.distributed = True torch.cuda.set_device(args.gpu) args.dist_backend = 'nccl' print('world_size', args.world_size, 'gpu', args.gpu, 'dist_url:', args.dist_url) print('| distributed init (rank {}): {}'.format( args.rank, args.dist_url), flush=True) torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank) print("init") torch.distributed.barrier() setup_for_distributed(args.rank == 0) def init_distributed_mode_multinodes(args): import hostlist if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: args.rank = int(os.environ["RANK"]) args.world_size = int(os.environ['WORLD_SIZE']) args.gpu = int(os.environ['LOCAL_RANK']) elif 'SLURM_PROCID' in os.environ: args.rank = int(os.environ['SLURM_PROCID']) args.gpu = args.rank % torch.cuda.device_count() print('slurm') else: print('Not using distributed mode') args.distributed = False return args.distributed = True # print(args.gpu, os.environ['SLURM_PROCID'], os.environ['SLURM_LOCALID'], os.environ['SLURM_JOB_NODELIST'], os.environ['SLURM_STEP_GPUS']) hostnames = hostlist.expand_hostlist(os.environ['SLURM_JOB_NODELIST']) os.environ['MASTER_ADDR'] = hostnames[0] gpu_ids = os.environ['SLURM_STEP_GPUS'].split(",") # os.environ['MASTER_PORT'] = str(12345 + int(min(gpu_ids))) # to avoid port conflict on the same node print(os.environ['MASTER_ADDR'], os.environ['MASTER_PORT']) torch.cuda.set_device(args.gpu) args.dist_backend = 'nccl' args.dist_url = 'tcp://'+os.environ['MASTER_ADDR']+':'+os.environ['MASTER_PORT'] print('world_size', args.world_size, 'gpu', args.gpu) print('| distributed init (rank {}): {}'.format( args.rank, args.dist_url), flush=True) torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank) # torch.distributed.barrier() # setup_for_distributed(args.rank == 0) def init_distributed_mode_multinodes_jz(args): import hostlist if args.jean_zay: hostnames = hostlist.expand_hostlist(os.environ['SLURM_JOB_NODELIST']) os.environ['MASTER_ADDR'] = hostnames[0] print(os.environ['MASTER_ADDR'], os.environ['MASTER_PORT'], os.environ['SLURM_PROCID'], os.environ['SLURM_NTASKS'], os.environ['SLURM_LOCALID']) args.gpu = int(os.environ['SLURM_LOCALID']) args.rank = int(os.environ['SLURM_PROCID']) args.world_size = int(os.environ['SLURM_NTASKS']) args.dist_url = 'env://'+os.environ['MASTER_ADDR']+':'+os.environ['MASTER_PORT'] # args.dist_url = 'env://' print('jean zay') elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ: args.rank = int(os.environ["RANK"]) args.world_size = int(os.environ['WORLD_SIZE']) args.gpu = int(os.environ['LOCAL_RANK']) elif 'SLURM_PROCID' in os.environ: args.rank = int(os.environ['SLURM_PROCID']) args.gpu = args.rank % torch.cuda.device_count() print('slurm') else: print('Not using distributed mode') args.distributed = False return args.distributed = True torch.cuda.set_device(args.gpu) args.dist_backend = 'nccl' print('world_size', args.world_size, 'gpu', args.gpu, 'rank', args.rank) print('| distributed init (rank {}): {}'.format( args.rank, args.dist_url), flush=True) torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank) torch.distributed.barrier() setup_for_distributed(args.rank == 0) # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved """ This file contains primitives for multi-gpu communication. This is useful when doing distributed training. """ import functools import logging import numpy as np import pickle import torch import torch.distributed as dist import torch _LOCAL_PROCESS_GROUP = None """ A torch process group which only includes processes that on the same machine as the current process. This variable is set when processes are spawned by `launch()` in "engine/launch.py". """ def get_world_size() -> int: if not dist.is_available(): return 1 if not dist.is_initialized(): return 1 return dist.get_world_size() def get_rank() -> int: if not dist.is_available(): return 0 if not dist.is_initialized(): return 0 return dist.get_rank() def get_local_rank() -> int: """ Returns: The rank of the current process within the local (per-machine) process group. """ if not dist.is_available(): return 0 if not dist.is_initialized(): return 0 assert _LOCAL_PROCESS_GROUP is not None return dist.get_rank(group=_LOCAL_PROCESS_GROUP) def get_local_size() -> int: """ Returns: The size of the per-machine process group, i.e. the number of processes per machine. """ if not dist.is_available(): return 1 if not dist.is_initialized(): return 1 return dist.get_world_size(group=_LOCAL_PROCESS_GROUP) def is_main_process() -> bool: return get_rank() == 0 def synchronize(): """ Helper function to synchronize (barrier) among all processes when using distributed training """ if not dist.is_available(): return if not dist.is_initialized(): return world_size = dist.get_world_size() if world_size == 1: return dist.barrier() @functools.lru_cache() def _get_global_gloo_group(): """ Return a process group based on gloo backend, containing all the ranks The result is cached. """ if dist.get_backend() == "nccl": return dist.new_group(backend="gloo") else: return dist.group.WORLD def _serialize_to_tensor(data, group): backend = dist.get_backend(group) assert backend in ["gloo", "nccl"] device = torch.device("cpu" if backend == "gloo" else "cuda") buffer = pickle.dumps(data) if len(buffer) > 1024 ** 3: logger = logging.getLogger(__name__) logger.warning( "Rank {} trying to all-gather {:.2f} GB of data on device {}".format( get_rank(), len(buffer) / (1024 ** 3), device ) ) storage = torch.ByteStorage.from_buffer(buffer) tensor = torch.ByteTensor(storage).to(device=device) return tensor def _pad_to_largest_tensor(tensor, group): """ Returns: list[int]: size of the tensor, on each rank Tensor: padded tensor that has the max size """ world_size = dist.get_world_size(group=group) assert ( world_size >= 1 ), "comm.gather/all_gather must be called from ranks within the given group!" local_size = torch.tensor( [tensor.numel()], dtype=torch.int64, device=tensor.device) size_list = [ torch.zeros([1], dtype=torch.int64, device=tensor.device) for _ in range(world_size) ] dist.all_gather(size_list, local_size, group=group) size_list = [int(size.item()) for size in size_list] max_size = max(size_list) # we pad the tensor because torch all_gather does not support # gathering tensors of different shapes if local_size != max_size: padding = torch.zeros( (max_size - local_size,), dtype=torch.uint8, device=tensor.device ) tensor = torch.cat((tensor, padding), dim=0) return size_list, tensor def all_gather(data, group=None): """ Run all_gather on arbitrary picklable data (not necessarily tensors). Args: data: any picklable object group: a torch process group. By default, will use a group which contains all ranks on gloo backend. Returns: list[data]: list of data gathered from each rank """ if get_world_size() == 1: return [data] if group is None: group = _get_global_gloo_group() if dist.get_world_size(group) == 1: return [data] tensor = _serialize_to_tensor(data, group) size_list, tensor = _pad_to_largest_tensor(tensor, group) max_size = max(size_list) # receiving Tensor from all ranks tensor_list = [ torch.empty((max_size,), dtype=torch.uint8, device=tensor.device) for _ in size_list ] dist.all_gather(tensor_list, tensor, group=group) data_list = [] for size, tensor in zip(size_list, tensor_list): buffer = tensor.cpu().numpy().tobytes()[:size] data_list.append(pickle.loads(buffer)) return data_list def gather(data, dst=0, group=None): """ Run gather on arbitrary picklable data (not necessarily tensors). Args: data: any picklable object dst (int): destination rank group: a torch process group. By default, will use a group which contains all ranks on gloo backend. Returns: list[data]: on dst, a list of data gathered from each rank. Otherwise, an empty list. """ if get_world_size() == 1: return [data] if group is None: group = _get_global_gloo_group() if dist.get_world_size(group=group) == 1: return [data] rank = dist.get_rank(group=group) tensor = _serialize_to_tensor(data, group) size_list, tensor = _pad_to_largest_tensor(tensor, group) # receiving Tensor from all ranks if rank == dst: max_size = max(size_list) tensor_list = [ torch.empty((max_size,), dtype=torch.uint8, device=tensor.device) for _ in size_list ] dist.gather(tensor, tensor_list, dst=dst, group=group) data_list = [] for size, tensor in zip(size_list, tensor_list): buffer = tensor.cpu().numpy().tobytes()[:size] data_list.append(pickle.loads(buffer)) return data_list else: dist.gather(tensor, [], dst=dst, group=group) return [] def shared_random_seed(): """ Returns: int: a random number that is the same across all workers. If workers need a shared RNG, they can use this shared seed to create one. All workers must call this function, otherwise it will deadlock. """ ints = np.random.randint(2 ** 31) all_ints = all_gather(ints) return all_ints[0] def reduce_dict(input_dict, average=True): """ Reduce the values in the dictionary from all processes so that process with rank 0 has the reduced results. Args: input_dict (dict): inputs to be reduced. (values not necessarily tensors). average (bool): whether to do average or sum Returns: a dict with the same keys as input_dict, after reduction. """ world_size = get_world_size() if world_size < 2: return input_dict with torch.no_grad(): # Convert to CUDA Tensor for dist.reduce() input_dict_cuda_vals = {} for k, v in input_dict.items(): if type(v) == torch.Tensor: input_dict_cuda_vals[k] = v.to('cuda') else: input_dict_cuda_vals[k] = torch.tensor(v, device='cuda') names = [] values = [] for k, v in sorted(input_dict_cuda_vals.items()): names.append(k) values.append(v) values = torch.stack(values, dim=0) dist.reduce(values, dst=0) # reduce to gpu 0 if dist.get_rank() == 0 and average: # only main process gets accumulated, so only divide by # world_size in this case values /= world_size reduced_dict = {k: v for k, v in zip(names, values)} return reduced_dict