# https://github.com/kenshohara/video-classification-3d-cnn-pytorch import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import math from functools import partial __all__ = ['ResNeXt', 'resnet50', 'resnet101'] def conv3x3x3(in_planes, out_planes, stride=1): # 3x3x3 convolution with padding return nn.Conv3d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) def downsample_basic_block(x, planes, stride): out = F.avg_pool3d(x, kernel_size=1, stride=stride) zero_pads = torch.Tensor(out.size(0), planes - out.size(1), out.size(2), out.size(3), out.size(4)).zero_() if isinstance(out.data, torch.cuda.FloatTensor): zero_pads = zero_pads.cuda() out = Variable(torch.cat([out.data, zero_pads], dim=1)) return out class ResNeXtBottleneck(nn.Module): expansion = 2 def __init__(self, inplanes, planes, cardinality, stride=1, downsample=None, norm_layer=nn.BatchNorm3d): super(ResNeXtBottleneck, self).__init__() mid_planes = cardinality * int(planes / 32) self.conv1 = nn.Conv3d(inplanes, mid_planes, kernel_size=1, bias=False) self.bn1 = norm_layer(mid_planes) self.conv2 = nn.Conv3d(mid_planes, mid_planes, kernel_size=3, stride=stride, padding=1, groups=cardinality, bias=False) self.bn2 = norm_layer(mid_planes) self.conv3 = nn.Conv3d(mid_planes, planes * self.expansion, kernel_size=1, bias=False) self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNeXt3D(nn.Module): def __init__(self, block, layers, sample_size=16, sample_duration=112, shortcut_type='B', cardinality=32, num_classes=400, last_fc=True, norm_layer=None): self.last_fc = last_fc self.inplanes = 64 super(ResNeXt3D, self).__init__() self.conv1 = nn.Conv3d(3, 64, kernel_size=7, stride=(1, 2, 2), padding=(3, 3, 3), bias=False) if norm_layer is None: norm_layer = nn.BatchNorm3d print("use bn:", norm_layer) self.bn1 = norm_layer(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool3d(kernel_size=(3, 3, 3), stride=2, padding=1) self.layer1 = self._make_layer(block, 128, layers[0], shortcut_type, cardinality, norm_layer=norm_layer) self.layer2 = self._make_layer(block, 256, layers[1], shortcut_type, cardinality, stride=2, norm_layer=norm_layer) self.layer3 = self._make_layer(block, 512, layers[2], shortcut_type, cardinality, stride=2, norm_layer=norm_layer) if len(layers) > 3: self.layer4 = self._make_layer(block, 1024, layers[3], shortcut_type, cardinality, stride=2, norm_layer=norm_layer) self.all_layers = True else: self.all_layers = False last_duration = math.ceil(sample_duration / 16) last_size = math.ceil(sample_size / 32) self.avgpool = nn.AvgPool3d((last_duration, last_size, last_size), stride=1) # self.fc = nn.Linear(cardinality * 32 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv3d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, norm_layer): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, shortcut_type, cardinality, stride=1, norm_layer=nn.BatchNorm3d): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: if shortcut_type == 'A': downsample = partial(downsample_basic_block, planes=planes * block.expansion, stride=stride) else: downsample = nn.Sequential( nn.Conv3d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), norm_layer(planes * block.expansion) ) layers = [] layers.append(block(self.inplanes, planes, cardinality, stride, downsample, norm_layer=norm_layer)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, cardinality, norm_layer=norm_layer)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) if self.all_layers: x = self.layer4(x) # x = self.avgpool(x) # x = x.view(x.size(0), -1) # if self.last_fc: # x = self.fc(x) return x, x def get_fine_tuning_parameters(model, ft_begin_index): if ft_begin_index == 0: return model.parameters() ft_module_names = [] for i in range(ft_begin_index, 5): ft_module_names.append('layer{}'.format(ft_begin_index)) ft_module_names.append('fc') parameters = [] for k, v in model.named_parameters(): for ft_module in ft_module_names: if ft_module in k: parameters.append({'params': v}) break else: parameters.append({'params': v, 'lr': 0.0}) return parameters def resnet50(**kwargs): """Constructs a ResNet-50 model. """ model = ResNeXt3D(ResNeXtBottleneck, [3, 4, 6, 3], **kwargs) return model def resnet101(**kwargs): """Constructs a ResNet-101 model. """ model = ResNeXt3D(ResNeXtBottleneck, [3, 4, 23, 3], **kwargs) return model def resnet152(**kwargs): """Constructs a ResNet-101 model. """ model = ResNeXt3D(ResNeXtBottleneck, [3, 8, 36, 3], **kwargs) return model