UnIVAL / data /audio_utils.py
mshukor
init
26fd00c
# https://github.com/LAION-AI/CLAP/blob/df65ca0f6c3062dc554132cb40e74f4915084b21/src/training/data.py#L469
from functools import partial
import soundfile as sf
import io
import numpy as np
import torch
import torchaudio
import torchvision
import torch.nn.functional as F
AUDIO_CFG = {
"sample_rate": 48000,
"audio_length": 1024,
"clip_samples": 480000,
"mel_bins": 64,
"window_size": 1024,
"hop_size": 480,
"fmin": 50,
"fmax": 14000,
"class_num": 527,
}
class dotdict(dict):
"""dot.notation access to dictionary attributes"""
__getattr__ = dict.get
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
class Map(dict):
"""
Example:
m = Map({'first_name': 'Eduardo'}, last_name='Pool', age=24, sports=['Soccer'])
"""
def __init__(self, *args, **kwargs):
super(Map, self).__init__(*args, **kwargs)
for arg in args:
if isinstance(arg, dict):
for k, v in arg.iteritems():
self[k] = v
if kwargs:
for k, v in kwargs.iteritems():
self[k] = v
def __getattr__(self, attr):
return self.get(attr)
def __setattr__(self, key, value):
self.__setitem__(key, value)
def __setitem__(self, key, value):
super(Map, self).__setitem__(key, value)
self.__dict__.update({key: value})
def __delattr__(self, item):
self.__delitem__(item)
def __delitem__(self, key):
super(Map, self).__delitem__(key)
del self.__dict__[key]
def int16_to_float32(x):
return (x / 32767.0).astype(np.float32)
def float32_to_int16(x):
x = np.clip(x, a_min=-1., a_max=1.)
return (x * 32767.).astype(np.int16)
def get_mel(audio_data,audio_cfg):
# mel shape: (n_mels, T)
mel = torchaudio.transforms.MelSpectrogram(
sample_rate=audio_cfg['sample_rate'],
n_fft=audio_cfg['window_size'],
win_length=audio_cfg['window_size'],
hop_length=audio_cfg['hop_size'],
center=True,
pad_mode="reflect",
power=2.0,
norm=None,
onesided=True,
n_mels=audio_cfg['mel_bins'],
f_min=audio_cfg['fmin'],
f_max=audio_cfg['fmax']
)(audio_data)
# we use log mel spectrogram as input
mel = torchaudio.transforms.AmplitudeToDB(top_db=None)(mel)
return mel.T # (T, n_mels)
def get_audio_features(sample, audio_data, max_len, data_truncating, data_filling, audio_cfg):
"""
Calculate and add audio features to sample.
Sample: a dict containing all the data of current sample.
audio_data: a tensor of shape (T) containing audio data.
max_len: the maximum length of audio data.
data_truncating: the method of truncating data.
data_filling: the method of filling data.
audio_cfg: a dict containing audio configuration. Comes from model_cfg['audio_cfg'].
"""
with torch.no_grad():
if len(audio_data) > max_len:
if data_truncating == "rand_trunc":
longer = torch.tensor([True])
elif data_truncating == "fusion":
# fusion
mel = get_mel(audio_data, audio_cfg)
# split to three parts
chunk_frames = max_len // audio_cfg['hop_size']+1 # the +1 related to how the spectrogram is computed
total_frames = mel.shape[0]
if chunk_frames == total_frames:
# there is a corner case where the audio length is
# larger than max_len but smaller than max_len+hop_size.
# In this case, we just use the whole audio.
mel_fusion = torch.stack([mel, mel, mel, mel], dim=0)
sample["mel_fusion"] = mel_fusion
longer = torch.tensor([False])
else:
ranges = np.array_split(list(range(0, total_frames-chunk_frames+1)), 3)
# print('total_frames-chunk_frames:', total_frames-chunk_frames,
# 'len(audio_data):', len(audio_data),
# 'chunk_frames:', chunk_frames,
# 'total_frames:', total_frames)
if len(ranges[1]) == 0:
# if the audio is too short, we just use the first chunk
ranges[1] = [0]
if len(ranges[2]) == 0:
# if the audio is too short, we just use the first chunk
ranges[2] = [0]
# randomly choose index for each part
idx_front = np.random.choice(ranges[0])
idx_middle = np.random.choice(ranges[1])
idx_back = np.random.choice(ranges[2])
# select mel
mel_chunk_front = mel[idx_front:idx_front+chunk_frames, :]
mel_chunk_middle = mel[idx_middle:idx_middle+chunk_frames, :]
mel_chunk_back = mel[idx_back:idx_back+chunk_frames, :]
# shrink the mel
mel_shrink = torchvision.transforms.Resize(size=[chunk_frames, 64])(mel[None])[0]
# logging.info(f"mel_shrink.shape: {mel_shrink.shape}")
# stack
mel_fusion = torch.stack([mel_chunk_front, mel_chunk_middle, mel_chunk_back, mel_shrink], dim=0)
sample["mel_fusion"] = mel_fusion
longer = torch.tensor([True])
else:
raise NotImplementedError(
f"data_truncating {data_truncating} not implemented"
)
# random crop to max_len (for compatibility)
overflow = len(audio_data) - max_len
idx = np.random.randint(0, overflow + 1)
audio_data = audio_data[idx: idx + max_len]
else: # padding if too short
if len(audio_data) < max_len: # do nothing if equal
if data_filling == "repeatpad":
n_repeat = int(max_len/len(audio_data))
audio_data = audio_data.repeat(n_repeat)
# audio_data = audio_data.unsqueeze(0).unsqueeze(0).unsqueeze(0)
# audio_data = F.interpolate(audio_data,size=max_len,mode="bicubic")[0,0,0]
audio_data = F.pad(
audio_data,
(0, max_len - len(audio_data)),
mode="constant",
value=0,
)
elif data_filling == "pad":
audio_data = F.pad(
audio_data,
(0, max_len - len(audio_data)),
mode="constant",
value=0,
)
elif data_filling == "repeat":
n_repeat = int(max_len/len(audio_data))
audio_data = audio_data.repeat(n_repeat+1)[:max_len]
else:
raise NotImplementedError(
f"data_filling {data_filling} not implemented"
)
if data_truncating == 'fusion':
mel = get_mel(audio_data, audio_cfg)
mel_fusion = torch.stack([mel, mel, mel, mel], dim=0)
sample["mel_fusion"] = mel_fusion
longer = torch.tensor([False])
sample["longer"] = longer
sample["waveform"] = audio_data
return sample