# -------------------------------- # by mrZ # Email: mrZ@mrZLab630.pw # Date: 2023-06-29 # Time: 11:08 # About: # -------------------------------- import sys import torch from peft import PeftModel import transformers import gradio as gr assert ( "LlamaTokenizer" in transformers._import_structure["models.llama"] ), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git" from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig SHARE_GRADIO=True LOAD_8BIT = False BASE_MODEL = "mrzlab630/weights_Llama_7b" LORA_WEIGHTS = "mrzlab630/lora-alpaca-trading-candles" #BASE_MODEL = "decapoda-research/llama-7b-hf" tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL) if torch.cuda.is_available(): device = "cuda" else: device = "cpu" try: if torch.backends.mps.is_available(): device = "mps" except: pass if device == "cuda": model = LlamaForCausalLM.from_pretrained( BASE_MODEL, load_in_8bit=LOAD_8BIT, torch_dtype=torch.float16, device_map="auto", ) model = PeftModel.from_pretrained( model, LORA_WEIGHTS, torch_dtype=torch.float16, ) elif device == "mps": model = LlamaForCausalLM.from_pretrained( BASE_MODEL, device_map={"": device}, torch_dtype=torch.float16, ) model = PeftModel.from_pretrained( model, LORA_WEIGHTS, device_map={"": device}, torch_dtype=torch.float16, ) else: model = LlamaForCausalLM.from_pretrained( BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True ) model = PeftModel.from_pretrained( model, LORA_WEIGHTS, device_map={"": device}, ) def generate_prompt(instruction, input=None): if input: return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Input: {input} ### Response:""" else: return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Response:""" if not LOAD_8BIT: model.half() # seems to fix bugs for some users. model.eval() if torch.__version__ >= "2" and sys.platform != "win32": model = torch.compile(model) def evaluate( instruction, input=None, temperature=0.1, top_p=0.75, top_k=40, num_beams=4, max_new_tokens=128, **kwargs, ): prompt = generate_prompt(instruction, input) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to(device) generation_config = GenerationConfig( temperature=temperature, top_p=top_p, top_k=top_k, num_beams=num_beams, **kwargs, ) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens, ) s = generation_output.sequences[0] output = tokenizer.decode(s) return output.split("### Response:")[1].strip() gr.Interface( fn=evaluate, inputs=[ gr.components.Textbox( lines=2, label="Instruction", placeholder="Tell me about alpacas." ), gr.components.Textbox(lines=2, label="Input", placeholder="none"), gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"), gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"), gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"), gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"), gr.components.Slider( minimum=1, maximum=2000, step=1, value=128, label="Max tokens" ), ], outputs=[ gr.inputs.Textbox( lines=5, label="Output", ) ], title="💹 🕯 Alpaca-LoRA-Trading-Candles", description="Alpaca-LoRA-Trading-Candles is a 7B-parameter LLaMA model tuned to execute instructions. It is trained on the [trading candles dataset](https://huggingface.co/datasets/mrzlab630/trading-candles) and uses the Huggingface LLaMA implementation. For more information, visit [project website](https://huggingface.co/mrzlab630/lora-alpaca-trading-candles).", ).launch(server_name="0.0.0.0", share=SHARE_GRADIO)