import pytorch_lightning as pl import torch from torch import nn from torch.nn import functional as F from torch.utils.data import random_split, DataLoader import torch.optim as optim from torchmetrics import Accuracy from torchvision import transforms class BasicBlock(pl.LightningModule): expansion = 1 def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion*planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out class ResNet(pl.LightningModule): def __init__(self, block, num_blocks, num_classes=10): super(ResNet, self).__init__() self.in_planes = 64 self.learning_rate = 0.001 self.accuracy = Accuracy(task='multiclass', num_classes=10) self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.linear = nn.Linear(512*block.expansion, num_classes) def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1]*(num_blocks-1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out ################################################################################ #train loop def training_step(self, batch, batch_idx): x, y = batch preds = self(x) loss = F.cross_entropy(preds, y) acc = self.accuracy(preds, y) # perform logging self.log("train_loss", loss, on_step=True, on_epoch=True, prog_bar=True, logger=True) self.log("train_acc", acc, on_step=True, on_epoch=True, prog_bar=True, logger=True) return loss def validation_step(self, batch, batch_idx): x, y = batch preds = self(x) loss = F.cross_entropy(preds, y) acc = self.accuracy(preds, y) # perform logging self.log("val_loss", loss, on_epoch=True, prog_bar=False, logger=True) self.log("val_acc", acc, on_epoch=True, prog_bar=True, logger=True) return loss def test_step(self, batch, batch_idx): x, y = batch preds = self(x) loss = F.cross_entropy(preds, y) acc = self.accuracy(preds, y) # perform logging self.log("test_loss", loss, on_step=True, prog_bar=True, logger=True) self.log("test_acc", acc, on_step=True, prog_bar=True, logger=True) return loss def configure_optimizers(self): optimizer = optim.SGD(self.parameters(), lr=self.learning_rate, momentum=0.9) return { "optimizer": optimizer, "lr_scheduler": { "scheduler": torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=2), "monitor": "val_loss", "frequency": 1, }, } ################################### def ResNet18(): return ResNet(BasicBlock, [2, 2, 2, 2])