import torch, torchvision from torchvision import transforms import numpy as np import gradio as gr from PIL import Image from pytorch_grad_cam import GradCAM from pytorch_grad_cam.utils.image import show_cam_on_image from resnet18 import ResNet18 import gradio as gr model = ResNet18() model.load_state_dict(torch.load("resnet_model.pth", map_location=torch.device('cpu')), strict=False) inv_normalize = transforms.Normalize( mean=[-0.50/0.23, -0.50/0.23, -0.50/0.23], std=[1/0.23, 1/0.23, 1/0.23] ) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') def resize_image_pil(image, new_width, new_height): # Convert to PIL image img = Image.fromarray(np.array(image)) # Get original size width, height = img.size # Calculate scale width_scale = new_width / width height_scale = new_height / height scale = min(width_scale, height_scale) # Resize resized = img.resize((int(width*scale), int(height*scale)), Image.NEAREST) # Crop to exact size resized = resized.crop((0, 0, new_width, new_height)) return resized def inference(input_img, is_grad_cam=True, transparency = 0.5,layer='layer2', target_layer_number = -1, top_predictions=3): input_img = resize_image_pil(input_img, 32, 32) input_img = np.array(input_img) org_img = input_img input_img = input_img.reshape((32, 32, 3)) transform = transforms.ToTensor() input_img = transform(input_img) input_img = input_img input_img = input_img.unsqueeze(0) outputs = model(input_img) softmax = torch.nn.Softmax(dim=0) o = softmax(outputs.flatten()) confidences = {classes[i]: float(o[i]) for i in range(10)} _, prediction = torch.max(outputs, 1) if is_grad_cam: if layer == 'layer1': target_layers = [model.layer1[target_layer_number]] cam = GradCAM(model=model, target_layers=target_layers) grayscale_cam = cam(input_tensor=input_img, targets=None) grayscale_cam = grayscale_cam[0, :] visualization = show_cam_on_image(org_img/255, grayscale_cam, use_rgb=True, image_weight=transparency) if layer == 'layer2': target_layers = [model.layer2[target_layer_number]] cam = GradCAM(model=model, target_layers=target_layers) grayscale_cam = cam(input_tensor=input_img, targets=None) grayscale_cam = grayscale_cam[0, :] visualization = show_cam_on_image(org_img/255, grayscale_cam, use_rgb=True, image_weight=transparency) if layer == 'layer3': target_layers = [model.layer3[target_layer_number]] cam = GradCAM(model=model, target_layers=target_layers) grayscale_cam = cam(input_tensor=input_img, targets=None) grayscale_cam = grayscale_cam[0, :] visualization = show_cam_on_image(org_img/255, grayscale_cam, use_rgb=True, image_weight=transparency) if layer == 'layer4': target_layers = [model.layer4[target_layer_number]] cam = GradCAM(model=model, target_layers=target_layers) grayscale_cam = cam(input_tensor=input_img, targets=None) grayscale_cam = grayscale_cam[0, :] visualization = show_cam_on_image(org_img/255, grayscale_cam, use_rgb=True, image_weight=transparency) else: visualization = None # Sort the confidences dictionary based on confidence values sorted_confidences = dict(sorted(confidences.items(), key=lambda item: item[1], reverse=True)) # Pick the top n predictions top_n_confidences = dict(list(sorted_confidences.items())[:top_predictions]) return classes[prediction[0].item()], visualization, top_n_confidences title = "CIFAR10 trained on ResNet18 Model with GradCAM" description = "A simple Gradio interface to infer on ResNet model, and get GradCAM results" examples = [ ["examples/" + "cat.jpeg", True, 0.5, -1, 3], ["examples/" + "horse.jpg", True, 0.5, -1, 3], ["examples/" + "bird.webp", True, 0.5, -1, 3], ["examples/" + "dog1.jpg", True, 0.5, -1, 3], ["examples/" + "frog1.webp", True, 0.5, -1, 3], ["examples/" + "deer.webp", True, 0.5, -1, 3], ["examples/" + "airplane.png", True, 0.5, -1, 3], ["examples/" + "shipp.jpg",True, 0.5, -1, 3], ["examples/" + "car.jpg", True, 0.5, -1, 3], ["examples/"+ "truck1.jpg", True, 0.5, -1, 3], ] demo = gr.Interface( inference, inputs = [ gr.Image(width=256, height=256, label="Input Image"), gr.Checkbox(label="Show GradCAM"), gr.Slider(0, 1, value = 0.5, label="Overall Opacity of Image"), gr.Dropdown(["layer1", "layer2", "layer3", "layer4"], label="Layer"), gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?"), gr.Slider(2, 10, value=3, step=1, label="Number of Top Classes") ], outputs = [ "text", gr.Image(width=256, height=256, label="Output"), gr.Label(label="Top Classes") ], title = title, description = description, examples = examples, ) demo.launch()