{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "hLUuW5pTJuPT", "outputId": "60f4f431-9168-45a7-ee13-b3fce8f370a5" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Requirement already satisfied: roboflow in /usr/local/lib/python3.10/dist-packages (1.1.23)\n", "Requirement already satisfied: certifi==2023.7.22 in /usr/local/lib/python3.10/dist-packages (from roboflow) (2023.7.22)\n", "Requirement already satisfied: chardet==4.0.0 in /usr/local/lib/python3.10/dist-packages (from roboflow) (4.0.0)\n", "Requirement already satisfied: cycler==0.10.0 in /usr/local/lib/python3.10/dist-packages (from roboflow) (0.10.0)\n", "Requirement already satisfied: idna==2.10 in /usr/local/lib/python3.10/dist-packages (from roboflow) (2.10)\n", "Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.10/dist-packages (from roboflow) (1.4.5)\n", "Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (from roboflow) (3.7.1)\n", "Requirement already satisfied: numpy>=1.18.5 in /usr/local/lib/python3.10/dist-packages (from roboflow) (1.25.2)\n", "Requirement already satisfied: opencv-python-headless==4.8.0.74 in /usr/local/lib/python3.10/dist-packages (from roboflow) (4.8.0.74)\n", "Requirement already satisfied: Pillow>=7.1.2 in /usr/local/lib/python3.10/dist-packages (from roboflow) (9.4.0)\n", "Requirement already satisfied: python-dateutil in /usr/local/lib/python3.10/dist-packages (from roboflow) (2.8.2)\n", "Requirement already satisfied: python-dotenv in /usr/local/lib/python3.10/dist-packages (from roboflow) (1.0.1)\n", "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from roboflow) (2.31.0)\n", "Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from roboflow) (1.16.0)\n", "Requirement already satisfied: urllib3>=1.26.6 in /usr/local/lib/python3.10/dist-packages (from roboflow) (2.0.7)\n", "Requirement already satisfied: tqdm>=4.41.0 in /usr/local/lib/python3.10/dist-packages (from roboflow) (4.66.2)\n", "Requirement already satisfied: PyYAML>=5.3.1 in /usr/local/lib/python3.10/dist-packages (from roboflow) (6.0.1)\n", "Requirement already satisfied: requests-toolbelt in /usr/local/lib/python3.10/dist-packages (from roboflow) (1.0.0)\n", "Requirement already satisfied: python-magic in /usr/local/lib/python3.10/dist-packages (from roboflow) (0.4.27)\n", "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->roboflow) (1.2.0)\n", "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->roboflow) (4.49.0)\n", "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->roboflow) (23.2)\n", "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->roboflow) (3.1.1)\n", "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->roboflow) (3.3.2)\n", "Requirement already satisfied: wandb==0.15.12 in /usr/local/lib/python3.10/dist-packages (0.15.12)\n", "Requirement already satisfied: Click!=8.0.0,>=7.1 in /usr/local/lib/python3.10/dist-packages (from wandb==0.15.12) (8.1.7)\n", "Requirement already satisfied: GitPython!=3.1.29,>=1.0.0 in /usr/local/lib/python3.10/dist-packages (from wandb==0.15.12) (3.1.42)\n", "Requirement already satisfied: requests<3,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from wandb==0.15.12) (2.31.0)\n", "Requirement already satisfied: psutil>=5.0.0 in /usr/local/lib/python3.10/dist-packages (from wandb==0.15.12) (5.9.5)\n", "Requirement already satisfied: sentry-sdk>=1.0.0 in /usr/local/lib/python3.10/dist-packages (from wandb==0.15.12) (1.41.0)\n", "Requirement already satisfied: docker-pycreds>=0.4.0 in /usr/local/lib/python3.10/dist-packages (from wandb==0.15.12) (0.4.0)\n", "Requirement already satisfied: PyYAML in /usr/local/lib/python3.10/dist-packages (from wandb==0.15.12) (6.0.1)\n", "Requirement already satisfied: pathtools in /usr/local/lib/python3.10/dist-packages (from wandb==0.15.12) (0.1.2)\n", "Requirement already satisfied: setproctitle in /usr/local/lib/python3.10/dist-packages (from wandb==0.15.12) (1.3.3)\n", "Requirement already satisfied: setuptools in /usr/local/lib/python3.10/dist-packages (from wandb==0.15.12) (67.7.2)\n", "Requirement already satisfied: appdirs>=1.4.3 in /usr/local/lib/python3.10/dist-packages (from wandb==0.15.12) (1.4.4)\n", "Requirement already satisfied: protobuf!=4.21.0,<5,>=3.19.0 in /usr/local/lib/python3.10/dist-packages (from wandb==0.15.12) (3.20.3)\n", "Requirement already satisfied: six>=1.4.0 in /usr/local/lib/python3.10/dist-packages (from docker-pycreds>=0.4.0->wandb==0.15.12) (1.16.0)\n", "Requirement already satisfied: gitdb<5,>=4.0.1 in /usr/local/lib/python3.10/dist-packages (from GitPython!=3.1.29,>=1.0.0->wandb==0.15.12) (4.0.11)\n", "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.0.0->wandb==0.15.12) (3.3.2)\n", "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.0.0->wandb==0.15.12) (2.10)\n", "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.0.0->wandb==0.15.12) (2.0.7)\n", "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.0.0->wandb==0.15.12) (2023.7.22)\n", "Requirement already satisfied: smmap<6,>=3.0.1 in /usr/local/lib/python3.10/dist-packages (from gitdb<5,>=4.0.1->GitPython!=3.1.29,>=1.0.0->wandb==0.15.12) (5.0.1)\n", "Requirement already satisfied: ultralytics==8.0.186 in /usr/local/lib/python3.10/dist-packages (8.0.186)\n", "Requirement already satisfied: matplotlib>=3.3.0 in /usr/local/lib/python3.10/dist-packages (from ultralytics==8.0.186) (3.7.1)\n", "Requirement already satisfied: numpy>=1.22.2 in /usr/local/lib/python3.10/dist-packages (from ultralytics==8.0.186) (1.25.2)\n", "Requirement already satisfied: opencv-python>=4.6.0 in /usr/local/lib/python3.10/dist-packages (from ultralytics==8.0.186) (4.8.0.76)\n", "Requirement already satisfied: pillow>=7.1.2 in /usr/local/lib/python3.10/dist-packages (from ultralytics==8.0.186) (9.4.0)\n", "Requirement already satisfied: pyyaml>=5.3.1 in /usr/local/lib/python3.10/dist-packages (from ultralytics==8.0.186) (6.0.1)\n", "Requirement already satisfied: requests>=2.23.0 in /usr/local/lib/python3.10/dist-packages (from ultralytics==8.0.186) (2.31.0)\n", "Requirement already satisfied: scipy>=1.4.1 in /usr/local/lib/python3.10/dist-packages (from ultralytics==8.0.186) (1.11.4)\n", "Requirement already satisfied: torch>=1.8.0 in /usr/local/lib/python3.10/dist-packages (from ultralytics==8.0.186) (2.1.0+cu121)\n", "Requirement already satisfied: torchvision>=0.9.0 in /usr/local/lib/python3.10/dist-packages (from ultralytics==8.0.186) (0.16.0+cu121)\n", "Requirement already satisfied: tqdm>=4.64.0 in /usr/local/lib/python3.10/dist-packages (from ultralytics==8.0.186) (4.66.2)\n", "Requirement already satisfied: pandas>=1.1.4 in /usr/local/lib/python3.10/dist-packages (from ultralytics==8.0.186) (1.5.3)\n", "Requirement already satisfied: seaborn>=0.11.0 in /usr/local/lib/python3.10/dist-packages (from ultralytics==8.0.186) (0.13.1)\n", "Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from ultralytics==8.0.186) (5.9.5)\n", "Requirement already satisfied: py-cpuinfo in /usr/local/lib/python3.10/dist-packages (from ultralytics==8.0.186) (9.0.0)\n", "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.0->ultralytics==8.0.186) (1.2.0)\n", "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.0->ultralytics==8.0.186) (0.10.0)\n", "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.0->ultralytics==8.0.186) (4.49.0)\n", "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.0->ultralytics==8.0.186) (1.4.5)\n", "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.0->ultralytics==8.0.186) (23.2)\n", "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.0->ultralytics==8.0.186) (3.1.1)\n", "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.3.0->ultralytics==8.0.186) (2.8.2)\n", "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.1.4->ultralytics==8.0.186) (2023.4)\n", "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.23.0->ultralytics==8.0.186) (3.3.2)\n", "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.23.0->ultralytics==8.0.186) (2.10)\n", "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.23.0->ultralytics==8.0.186) (2.0.7)\n", "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.23.0->ultralytics==8.0.186) (2023.7.22)\n", "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch>=1.8.0->ultralytics==8.0.186) (3.13.1)\n", "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from torch>=1.8.0->ultralytics==8.0.186) (4.10.0)\n", "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch>=1.8.0->ultralytics==8.0.186) (1.12)\n", "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch>=1.8.0->ultralytics==8.0.186) (3.2.1)\n", "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch>=1.8.0->ultralytics==8.0.186) (3.1.3)\n", "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from torch>=1.8.0->ultralytics==8.0.186) (2023.6.0)\n", "Requirement already satisfied: triton==2.1.0 in /usr/local/lib/python3.10/dist-packages (from torch>=1.8.0->ultralytics==8.0.186) (2.1.0)\n", "Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from cycler>=0.10->matplotlib>=3.3.0->ultralytics==8.0.186) (1.16.0)\n", "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch>=1.8.0->ultralytics==8.0.186) (2.1.5)\n", "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch>=1.8.0->ultralytics==8.0.186) (1.3.0)\n" ] } ], "source": [ "!pip install roboflow\n", "!pip install wandb==0.15.12\n", "!pip install ultralytics==8.0.186" ] }, { "cell_type": "markdown", "metadata": { "id": "W4bpYoXPdICN" }, "source": [ "# Download Dataset" ] }, { "cell_type": "markdown", "metadata": { "id": "k2a4POcLdKPd" }, "source": [ "I found an object detection dataset on Roboflow Universe. This dataset contains 9989 images with 4 classes:\n", "* `ambulance`\n", "* `label`\n", "* `siren`\n", "* `misc` (other type of trucks).\n", "\n", "**Note**: You need to insert your Roboflow API key to run the cell below." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "id": "hK2DcESMHFwD", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "ab668dca-19ff-4213-81da-c41b0f90c27f" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "··········\n", "loading Roboflow workspace...\n", "loading Roboflow project...\n", "Dependency ultralytics==8.0.196 is required but found version=8.0.186, to fix: `pip install ultralytics==8.0.196`\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "Downloading Dataset Version Zip in PH-Ambulances-1 to yolov8:: 100%|██████████| 558873/558873 [00:12<00:00, 43413.13it/s]" ] }, { "output_type": "stream", "name": "stdout", "text": [ "\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\n", "Extracting Dataset Version Zip to PH-Ambulances-1 in yolov8:: 100%|██████████| 19990/19990 [00:04<00:00, 4758.68it/s]\n" ] } ], "source": [ "from getpass import getpass\n", "from roboflow import Roboflow\n", "\n", "rf = Roboflow(api_key=getpass())\n", "project = rf.workspace(\"ph-ambulance-dataset-with-augmentations\").project(\"ph-ambulances\")\n", "version = project.version(1)\n", "dataset = version.download(\"yolov8\")\n" ] }, { "cell_type": "markdown", "metadata": { "id": "VAvLch8RecBl" }, "source": [ "The dataset would be splitted into 3 parts when we download it." ] }, { "cell_type": "markdown", "metadata": { "id": "9j2UItKteX5Q" }, "source": [ "![image.png]()" ] }, { "cell_type": "markdown", "metadata": { "id": "SofVDqFBw5Oq" }, "source": [ "All images in this dataset are already resized into 640x640 and it also includes augmented samples. So, I don't need to do any data preparation. However, I still need to modify the labels." ] }, { "cell_type": "markdown", "metadata": { "id": "zO5bJpTMw5Oo" }, "source": [ "![image.png]()" ] }, { "cell_type": "markdown", "metadata": { "id": "6fBlo3Uaw5Oq" }, "source": [ "# Data Preparation" ] }, { "cell_type": "markdown", "metadata": { "id": "0TBz75Ybw5Oq" }, "source": [ "I need to convert the classes to only include 2 classes: `ambulance` and `truck`.\n", "\n", "To do that I will rename the label directories into original labels." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "id": "jB36UdL5AS4y" }, "outputs": [], "source": [ "!mv /content/PH-Ambulances-1/train/labels /content/PH-Ambulances-1/train/labels-original\n", "!mv /content/PH-Ambulances-1/valid/labels /content/PH-Ambulances-1/valid/labels-original\n", "!mv /content/PH-Ambulances-1/test/labels /content/PH-Ambulances-1/test/labels-original" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "id": "0s8Cpnf8IZcx" }, "outputs": [], "source": [ "# !rm -rf /content/PH-Ambulances-1/train/labels\n", "# !rm -rf /content/PH-Ambulances-1/valid/labels\n", "# !rm -rf /content/PH-Ambulances-1/test/labels" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "id": "8XO7pI5zAimE" }, "outputs": [], "source": [ "!mkdir /content/PH-Ambulances-1/train/labels\n", "!mkdir /content/PH-Ambulances-1/valid/labels\n", "!mkdir /content/PH-Ambulances-1/test/labels" ] }, { "cell_type": "markdown", "metadata": { "id": "WNOmtgBfw5Or" }, "source": [ "Then, I will iterate through all the labels and convert them to only include our desired classes. Here is the label annotations:\n", "\n", "* 0: Ambulance\n", "* 1: Label\n", "* 2: Truck\n", "* 3: Siren\n", "\n", "I will only use 0 and 2" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "ZSrJhNewA-TW", "outputId": "e420593d-64a9-43a1-bdf2-6815230162a3" }, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "100%|██████████| 6992/6992 [00:00<00:00, 12840.75it/s]\n", "100%|██████████| 1998/1998 [00:00<00:00, 13441.58it/s]\n", "100%|██████████| 999/999 [00:00<00:00, 13681.32it/s]\n" ] } ], "source": [ "import glob, os\n", "import tqdm\n", "\n", "usable_class = {\n", " '0': '0',\n", " '2': '1',\n", " '4': '2'\n", "}\n", "\n", "def convert_object_labels(objects):\n", " new_objects = []\n", " for object_ in objects:\n", " if len(object_)>0:\n", " class_name = object_[0]\n", " if class_name in usable_class:\n", " new_objects.append(usable_class[class_name] + object_[1:])\n", " return new_objects\n", "\n", "for split in ['train', 'valid', 'test']:\n", " for filepath in tqdm.tqdm(glob.glob(f'/content/PH-Ambulances-1/{split}/labels-original/*.txt')):\n", "\n", " # Read original annotion and convert it\n", " with open(filepath, 'r') as f:\n", " objects = f.read().split('\\n')\n", " objects = convert_object_labels(objects)\n", "\n", " # Write new annotation\n", " new_path = filepath.replace('labels-original', 'labels')\n", " with open(new_path, 'w') as f:\n", " f.write('\\n'.join(objects))\n" ] }, { "cell_type": "markdown", "metadata": { "id": "16SXeQGJw5Or" }, "source": [ "\n", "I need to modify the data.yaml that we will use in the training process." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "Ut2Wo1QMG6lQ", "outputId": "fdf5d4dc-7488-4583-9831-0adc832ebbc7" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Overwriting /content/PH-Ambulances-1/new_data.yaml\n" ] } ], "source": [ "%%writefile /content/PH-Ambulances-1/new_data.yaml\n", "\n", "names:\n", "- Aambulance\n", "- truck\n", "- object\n", "nc: 3\n", "roboflow:\n", " license: CC BY 4.0\n", " project: ph-ambulances\n", " url: https://universe.roboflow.com/ph-ambulance-dataset-with-augmentations/ph-ambulances/dataset/1\n", " version: 1\n", " workspace: ph-ambulance-dataset-with-augmentations\n", "test: /content/PH-Ambulances-1/test/images\n", "train: /content/PH-Ambulances-1/train/images\n", "val: /content/PH-Ambulances-1/valid/images\n" ] }, { "cell_type": "markdown", "metadata": { "id": "JCYjNpydw5Os" }, "source": [ "# Model Training" ] }, { "cell_type": "markdown", "metadata": { "id": "9eJha2Kyw5Os" }, "source": [ "I will use ultralytics to train YOLOv8, and WandB to monitor the training process. This wandb tracking implementation includes some advanced features that we will see shortly." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "A79lfQaaQxY4", "outputId": "f701e283-02a2-45f1-df20-21779e8944ad" }, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "WARNING ⚠️ 'ultralytics.yolo.v8' is deprecated since '8.0.136' and will be removed in '8.1.0'. Please use 'ultralytics.models.yolo' instead.\n", "WARNING ⚠️ 'ultralytics.yolo.utils' is deprecated since '8.0.136' and will be removed in '8.1.0'. Please use 'ultralytics.utils' instead.\n", "Note this warning may be related to loading older models. You can update your model to current structure with:\n", " import torch\n", " ckpt = torch.load(\"model.pt\") # applies to both official and custom models\n", " torch.save(ckpt, \"updated-model.pt\")\n", "\n" ] } ], "source": [ "import wandb\n", "from wandb.integration.ultralytics import add_wandb_callback\n", "from PIL import Image\n", "\n", "from ultralytics import YOLO" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 884 }, "id": "mZzOItry66VU", "outputId": "21d8c511-5fb0-49b4-ddfb-97863678ddeb" }, "outputs": [ { "data": { "text/html": [ "Finishing last run (ID:fcf4xfc6) before initializing another..." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (success)." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "

Run history:


lr/pg0
lr/pg1
lr/pg2
train/box_loss
train/cls_loss
train/dfl_loss

Run summary:


lr/pg00.00047
lr/pg10.00047
lr/pg20.00047
train/box_loss0.0
train/cls_loss107.27233
train/dfl_loss0.0

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run stellar-moon-10 at: https://wandb.ai/nodeflux-internship/kecilin-tech-assessment/runs/fcf4xfc6
Synced 5 W&B file(s), 0 media file(s), 0 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20240309_120555-fcf4xfc6/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Successfully finished last run (ID:fcf4xfc6). Initializing new run:
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "wandb version 0.16.4 is available! To upgrade, please run:\n", " $ pip install wandb --upgrade" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Tracking run with wandb version 0.15.12" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /content/wandb/run-20240309_121456-jeos7szf" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run ethereal-waterfall-11 to Weights & Biases (docs)
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/nodeflux-internship/kecilin-tech-assessment" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/nodeflux-internship/kecilin-tech-assessment/runs/jeos7szf" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "" ], "text/plain": [ "" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "wandb.init(project=\"kecilin-tech-assessment\", job_type=\"training\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "3QhRD12ABwT3", "outputId": "4848fb3b-deed-4cf0-d331-8204b89edf3c" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Ultralytics YOLOv8.0.186 🚀 Python-3.10.12 torch-2.1.0+cu121 CUDA:0 (Tesla T4, 15102MiB)\n", "Setup complete ✅ (2 CPUs, 12.7 GB RAM, 26.6/78.2 GB disk)\n" ] } ], "source": [ "import ultralytics\n", "ultralytics.checks()" ] }, { "cell_type": "markdown", "metadata": { "id": "OjpabMQqw5Ot" }, "source": [ "I trained YOLOv8 for 10 epochs." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "id": "2iFRJbtnQ6f8", "outputId": "b4571215-5cb5-4a29-8d4b-2b17e7975348" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "New https://pypi.org/project/ultralytics/8.1.24 available 😃 Update with 'pip install -U ultralytics'\n", "Ultralytics YOLOv8.0.186 🚀 Python-3.10.12 torch-2.1.0+cu121 CUDA:0 (Tesla T4, 15102MiB)\n", "\u001b[34m\u001b[1mengine/trainer: \u001b[0mtask=detect, mode=train, model=yolov8n.pt, data=/content/PH-Ambulances-1/new_data.yaml, epochs=10, patience=50, batch=16, imgsz=640, save=True, save_period=-1, cache=False, device=[0], workers=8, project=kecilin-tech-assessment, name=None, exist_ok=False, pretrained=True, optimizer=auto, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=10, resume=False, amp=True, fraction=1.0, profile=False, freeze=None, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, show=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, vid_stride=1, stream_buffer=False, line_width=None, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, boxes=True, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0, cfg=None, tracker=botsort.yaml, save_dir=kecilin-tech-assessment/train3\n", "Overriding model.yaml nc=80 with nc=3\n", "\n", " from n params module arguments \n", " 0 -1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2] \n", " 1 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2] \n", " 2 -1 1 7360 ultralytics.nn.modules.block.C2f [32, 32, 1, True] \n", " 3 -1 1 18560 ultralytics.nn.modules.conv.Conv [32, 64, 3, 2] \n", " 4 -1 2 49664 ultralytics.nn.modules.block.C2f [64, 64, 2, True] \n", " 5 -1 1 73984 ultralytics.nn.modules.conv.Conv [64, 128, 3, 2] \n", " 6 -1 2 197632 ultralytics.nn.modules.block.C2f [128, 128, 2, True] \n", " 7 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2] \n", " 8 -1 1 460288 ultralytics.nn.modules.block.C2f [256, 256, 1, True] \n", " 9 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5] \n", " 10 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n", " 11 [-1, 6] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", " 12 -1 1 148224 ultralytics.nn.modules.block.C2f [384, 128, 1] \n", " 13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n", " 14 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", " 15 -1 1 37248 ultralytics.nn.modules.block.C2f [192, 64, 1] \n", " 16 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2] \n", " 17 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", " 18 -1 1 123648 ultralytics.nn.modules.block.C2f [192, 128, 1] \n", " 19 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2] \n", " 20 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1] \n", " 21 -1 1 493056 ultralytics.nn.modules.block.C2f [384, 256, 1] \n", " 22 [15, 18, 21] 1 751897 ultralytics.nn.modules.head.Detect [3, [64, 128, 256]] \n", "Model summary: 225 layers, 3011433 parameters, 3011417 gradients\n", "\n", "Transferred 319/355 items from pretrained weights\n", "\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir kecilin-tech-assessment/train3', view at http://localhost:6006/\n", "Freezing layer 'model.22.dfl.conv.weight'\n", "\u001b[34m\u001b[1mAMP: \u001b[0mrunning Automatic Mixed Precision (AMP) checks with YOLOv8n...\n", "\u001b[34m\u001b[1mAMP: \u001b[0mchecks passed ✅\n", "\u001b[34m\u001b[1mtrain: \u001b[0mScanning /content/PH-Ambulances-1/train/labels... 6992 images, 84 backgrounds, 0 corrupt: 100%|██████████| 6992/6992 [00:03<00:00, 2196.26it/s]\n", "\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: /content/PH-Ambulances-1/train/labels.cache\n", "WARNING ⚠️ Box and segment counts should be equal, but got len(segments) = 1, len(boxes) = 8032. To resolve this only boxes will be used and all segments will be removed. To avoid this please supply either a detect or segment dataset, not a detect-segment mixed dataset.\n", "\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))\n", "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/PH-Ambulances-1/valid/labels... 1998 images, 29 backgrounds, 0 corrupt: 100%|██████████| 1998/1998 [00:01<00:00, 1290.77it/s]\n", "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/PH-Ambulances-1/valid/labels.cache\n", "WARNING ⚠️ Box and segment counts should be equal, but got len(segments) = 1, len(boxes) = 2296. To resolve this only boxes will be used and all segments will be removed. To avoid this please supply either a detect or segment dataset, not a detect-segment mixed dataset.\n", "Plotting labels to kecilin-tech-assessment/train3/labels.jpg... \n", "\u001b[34m\u001b[1moptimizer:\u001b[0m 'optimizer=auto' found, ignoring 'lr0=0.01' and 'momentum=0.937' and determining best 'optimizer', 'lr0' and 'momentum' automatically... \n", "\u001b[34m\u001b[1moptimizer:\u001b[0m AdamW(lr=0.001429, momentum=0.9) with parameter groups 57 weight(decay=0.0), 64 weight(decay=0.0005), 63 bias(decay=0.0)\n", "Image sizes 640 train, 640 val\n", "Using 2 dataloader workers\n", "Logging results to \u001b[1mkecilin-tech-assessment/train3\u001b[0m\n", "Starting training for 10 epochs...\n", "Closing dataloader mosaic\n", "\u001b[34m\u001b[1malbumentations: \u001b[0mBlur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 1/10 2.68G 1 1.941 1.723 17 640: 100%|██████████| 437/437 [02:24<00:00, 3.02it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 63/63 [00:23<00:00, 2.67it/s]\n", " all 1998 2296 0.836 0.714 0.792 0.537\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/008CY5SRHBLM_jpg.rf.9d5200b85865cfb42ad09f8b476f326a.jpg: 640x640 1 Aambulance, 25.2ms\n", "Speed: 2.2ms preprocess, 25.2ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PhilippineAmbulance10_png_jpg.rf.0685a1c7285200a6905ef36d7d8ee3f4.jpg: 640x640 8 Aambulances, 18.7ms\n", "Speed: 2.0ms preprocess, 18.7ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PZW2GCU82CAU_jpg.rf.b4a7b0158c73d0c79291685bccd42030.jpg: 640x640 1 Aambulance, 8.0ms\n", "Speed: 1.4ms preprocess, 8.0ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PZG4QKP0MHGL_jpg.rf.3a710898c02bb36dd50149fb095f0d98.jpg: 640x640 1 Aambulance, 8.0ms\n", "Speed: 1.5ms preprocess, 8.0ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PWLTU7DWPA22_jpg.rf.5a3ba1c518bce62d53e02d5e2452e5f7.jpg: 640x640 1 Aambulance, 9.6ms\n", "Speed: 1.4ms preprocess, 9.6ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PVAMCAFA4O7J_jpg.rf.64dc28064bfefea903a1cd0eed1bc4e7.jpg: 640x640 2 Aambulances, 7.4ms\n", "Speed: 1.4ms preprocess, 7.4ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PTIORNH6UH09_jpg.rf.6331df8e05d0288662a57cc356fbcc40.jpg: 640x640 2 Aambulances, 7.7ms\n", "Speed: 1.6ms preprocess, 7.7ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PT1SVXQINQHO_jpg.rf.931ec739604f3ecbd54853c0909db352.jpg: 640x640 2 Aambulances, 7.9ms\n", "Speed: 1.6ms preprocess, 7.9ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PT1SVXQINQHO_jpg.rf.1565a8213c3d56c0c61dd755711a7a2b.jpg: 640x640 2 Aambulances, 7.7ms\n", "Speed: 1.4ms preprocess, 7.7ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PQH38B2J3YSE_jpg.rf.fc8a2733c72fec48b10ffe8c1bc4d41b.jpg: 640x640 1 Aambulance, 8.8ms\n", "Speed: 1.4ms preprocess, 8.8ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PONHEEF87VA9_jpg.rf.e870d87da9da5c54a34fbc03fc3d11e5.jpg: 640x640 3 Aambulances, 7.9ms\n", "Speed: 1.4ms preprocess, 7.9ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PONHEEF87VA9_jpg.rf.6970e9fdff11bbb52f360d6af1541ef9.jpg: 640x640 2 Aambulances, 7.4ms\n", "Speed: 1.4ms preprocess, 7.4ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/POII3JUWKXYN_jpg.rf.da0bb0bdb281be6f73ea1daca1dd8ef5.jpg: 640x640 1 Aambulance, 8.2ms\n", "Speed: 1.5ms preprocess, 8.2ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/POII3JUWKXYN_jpg.rf.d582f0a2f170fcdd1125e3decfaee639.jpg: 640x640 1 Aambulance, 7.4ms\n", "Speed: 1.4ms preprocess, 7.4ms inference, 1.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PNMRPUN2EJN2_jpg.rf.bdc2a9ca7375320bf4011b9a5faf2ea3.jpg: 640x640 7 Aambulances, 7.8ms\n", "Speed: 1.4ms preprocess, 7.8ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PLSIX61WGCEM_jpg.rf.d97faab19bece732d2b48cba1d09b5c4.jpg: 640x640 4 Aambulances, 7.7ms\n", "Speed: 1.4ms preprocess, 7.7ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PLSIX61WGCEM_jpg.rf.b26df5f58669c3babbcb318997aca9cd.jpg: 640x640 1 Aambulance, 7.9ms\n", "Speed: 1.3ms preprocess, 7.9ms inference, 1.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PKYULF2WVPNH_jpg.rf.5f58b69b3ce028c9c5c67329b17bdcc7.jpg: 640x640 1 Aambulance, 7.7ms\n", "Speed: 1.4ms preprocess, 7.7ms inference, 1.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PJEPN2RARLTD_jpg.rf.7cc66da25dfb0d6bdfad4e797907c055.jpg: 640x640 8 Aambulances, 8.1ms\n", "Speed: 1.4ms preprocess, 8.1ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PJEPN2RARLTD_jpg.rf.0cebbe79f474dde8d16440b8ae0f21a5.jpg: 640x640 8 Aambulances, 7.9ms\n", "Speed: 1.4ms preprocess, 7.9ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PHTGEFWRXOEA_jpg.rf.c4feff57fd957811260b864e3228e420.jpg: 640x640 5 Aambulances, 8.0ms\n", "Speed: 1.5ms preprocess, 8.0ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PFQS6U8GZMG8_jpg.rf.05a126f875ebc3710d9f9656f9c74bcf.jpg: 640x640 2 Aambulances, 7.5ms\n", "Speed: 1.4ms preprocess, 7.5ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PFC7E93FFPOX_jpg.rf.a0bb3e16c07e69783e3159294e511982.jpg: 640x640 1 Aambulance, 7.7ms\n", "Speed: 1.4ms preprocess, 7.7ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PE15OCTY8LAP_jpg.rf.d0e4c249bcbbc4383927f39ccce38073.jpg: 640x640 2 Aambulances, 8.3ms\n", "Speed: 1.7ms preprocess, 8.3ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PE15OCTY8LAP_jpg.rf.6344a3f0a2d8c6ce24a0d664b58c5f03.jpg: 640x640 1 Aambulance, 8.3ms\n", "Speed: 1.7ms preprocess, 8.3ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PDHDJVHO6KRF_jpg.rf.c953ec2d20d555f05008650dbf5e357a.jpg: 640x640 2 Aambulances, 7.7ms\n", "Speed: 1.6ms preprocess, 7.7ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PBKS3Z8FBZQC_jpg.rf.364cf4da6f12fd181befa3dd5cb9557d.jpg: 640x640 2 Aambulances, 7.5ms\n", "Speed: 1.3ms preprocess, 7.5ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PB7RFEW6N792_jpg.rf.b7a7f029f332b1e993623d3cfa217c3e.jpg: 640x640 2 Aambulances, 8.2ms\n", "Speed: 1.5ms preprocess, 8.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PhilippineAmbulance138_jpeg_jpg.rf.d474788d6556b13e0775d85cd7902fe1.jpg: 640x640 4 Aambulances, 15.6ms\n", "Speed: 1.4ms preprocess, 15.6ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PAX4Y3F8AODV_jpg.rf.96e7535cca05014a7893a4093c246494.jpg: 640x640 3 Aambulances, 8.2ms\n", "Speed: 1.5ms preprocess, 8.2ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PhilippineAmbulance156_jpeg_jpg.rf.0b142edfc6672323005935e3bea58a2d.jpg: 640x640 1 Aambulance, 7.9ms\n", "Speed: 1.3ms preprocess, 7.9ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PhilippineAmbulance175_jpeg_jpg.rf.ca3302c9ac9e52203b09fe3b72c8af1a.jpg: 640x640 3 Aambulances, 7.8ms\n", "Speed: 1.4ms preprocess, 7.8ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 2/10 2.51G 1.003 1.084 1.734 22 640: 100%|██████████| 437/437 [02:20<00:00, 3.11it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 63/63 [00:21<00:00, 2.99it/s]\n", " all 1998 2296 0.835 0.746 0.841 0.577\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/QJXP9N9T2GOC_jpg.rf.67f6075b3b18286538d527458690196f.jpg: 640x640 2 Aambulances, 49.2ms\n", "Speed: 10.8ms preprocess, 49.2ms inference, 11.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/QH3GKTDD2PKG_jpg.rf.20b2a94f3f76e692c8d2552402700bbb.jpg: 640x640 1 Aambulance, 11.3ms\n", "Speed: 1.7ms preprocess, 11.3ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/QH3GKTDD2PKG_jpg.rf.0ab2f4c452f5669310130dce7d1a58b1.jpg: 640x640 1 Aambulance, 10.9ms\n", "Speed: 1.6ms preprocess, 10.9ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/QF8CIJL425H1_jpg.rf.d09c4cce9ec9554f209c8d248720fa87.jpg: 640x640 3 Aambulances, 14.3ms\n", "Speed: 2.0ms preprocess, 14.3ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/QCJTHDT9CIAA_jpg.rf.a5f6ea17c8cbdd24636190329a0012d3.jpg: 640x640 1 Aambulance, 13.8ms\n", "Speed: 1.7ms preprocess, 13.8ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/QBXKDLJXPDHA_jpg.rf.eed77c345efa2c36244e467811cc3de1.jpg: 640x640 2 Aambulances, 14.4ms\n", "Speed: 1.9ms preprocess, 14.4ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/QBXKDLJXPDHA_jpg.rf.c14d804351fe5e49f15cdaca9905910f.jpg: 640x640 1 Aambulance, 14.6ms\n", "Speed: 2.0ms preprocess, 14.6ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/Q92YH3B0023R_jpg.rf.5e30f8fc33fb973d7607659e382bd377.jpg: 640x640 1 Aambulance, 8.8ms\n", "Speed: 1.5ms preprocess, 8.8ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/Q656Z7I31MWD_jpg.rf.cee0b099bdfd03460801022f1e0a92b1.jpg: 640x640 1 Aambulance, 7.7ms\n", "Speed: 1.4ms preprocess, 7.7ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/Q656Z7I31MWD_jpg.rf.9f162911c2e63acb14b60af00edd42fe.jpg: 640x640 1 Aambulance, 11.4ms\n", "Speed: 1.7ms preprocess, 11.4ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/Q5DX0E3OJS91_jpg.rf.9eb671710152c9f4204f89a823b19a56.jpg: 640x640 1 Aambulance, 7.8ms\n", "Speed: 1.4ms preprocess, 7.8ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/Q5DX0E3OJS91_jpg.rf.4d131628a64e28c5a81a997386728c07.jpg: 640x640 1 Aambulance, 7.9ms\n", "Speed: 1.4ms preprocess, 7.9ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/Q2CMQF6EPVNI_jpg.rf.53f75877aafe5b1193a6e289d2d3cdb8.jpg: 640x640 1 Aambulance, 7.7ms\n", "Speed: 1.5ms preprocess, 7.7ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/Q137908RS7NL_jpg.rf.a7b8e69094a9c0f0203ef74918b41a99.jpg: 640x640 1 Aambulance, 1 truck, 7.9ms\n", "Speed: 1.3ms preprocess, 7.9ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/Q0DU2SLAHBGK_jpg.rf.ea0e5ce12fe5964cc0a4531343ec7a63.jpg: 640x640 1 Aambulance, 7.8ms\n", "Speed: 1.6ms preprocess, 7.8ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/Philippineambulancel30089_jpeg_jpg.rf.218fb82c85746cbf960711bfb13a6cfd.jpg: 640x640 6 Aambulances, 7.5ms\n", "Speed: 1.4ms preprocess, 7.5ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[33mWARNING\u001b[0m Image: /content/PH-Ambulances-1/valid/images/Philippineambulancel30089_jpeg_jpg.rf.218fb82c85746cbf960711bfb13a6cfd.jpg has no bounding boxes labels\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/Philippineambulancel30082_jpeg_jpg.rf.bf53f927ee0b5d7e8f6a263051a55ec3.jpg: 640x640 1 Aambulance, 1 truck, 8.2ms\n", "Speed: 1.4ms preprocess, 8.2ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\u001b[34m\u001b[1mwandb\u001b[0m: \u001b[33mWARNING\u001b[0m Image: /content/PH-Ambulances-1/valid/images/Philippineambulancel30082_jpeg_jpg.rf.bf53f927ee0b5d7e8f6a263051a55ec3.jpg has no bounding boxes labels\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/Philippineambulancel30029_jpeg_jpg.rf.3a894a28806928e556f31b925ad897be.jpg: 640x640 2 trucks, 9.2ms\n", "Speed: 1.4ms preprocess, 9.2ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/Philippineambulancel30029_jpeg_jpg.rf.13e5e7cb962666ca81312ad0604664aa.jpg: 640x640 1 Aambulance, 2 trucks, 8.1ms\n", "Speed: 1.4ms preprocess, 8.1ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PhilippineAmbulance9_png_jpg.rf.34b49e190648270ba812f1958264cdf1.jpg: 640x640 1 Aambulance, 8.0ms\n", "Speed: 1.4ms preprocess, 8.0ms inference, 1.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PhilippineAmbulance80_jpeg_jpg.rf.cfa4dbcf9a8b651211014e1c6accd85f.jpg: 640x640 1 Aambulance, 7.7ms\n", "Speed: 1.6ms preprocess, 7.7ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PhilippineAmbulance78_jpeg_jpg.rf.6fddce7a31a91212356e1543100b9c9f.jpg: 640x640 1 Aambulance, 7.4ms\n", "Speed: 1.4ms preprocess, 7.4ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PhilippineAmbulance77_jpeg_jpg.rf.4b361232604ce285fb40971c3e8df389.jpg: 640x640 1 Aambulance, 8.2ms\n", "Speed: 1.4ms preprocess, 8.2ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PhilippineAmbulance52_jpeg_jpg.rf.2e97f0dca6d01ca3e3e0bb811999743a.jpg: 640x640 5 Aambulances, 8.6ms\n", "Speed: 1.4ms preprocess, 8.6ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PhilippineAmbulance229_jpeg_jpg.rf.aed2f4d3806453065e78a0d8bbc0eab9.jpg: 640x640 3 Aambulances, 1 truck, 10.8ms\n", "Speed: 1.4ms preprocess, 10.8ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PhilippineAmbulance220_jpeg_jpg.rf.ffed69d882fd6ff9b7843142f0552963.jpg: 640x640 1 Aambulance, 7.8ms\n", "Speed: 1.4ms preprocess, 7.8ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PhilippineAmbulance18_jpeg_jpg.rf.ad72244504bf760f5a30940e402ef072.jpg: 640x640 2 Aambulances, 3 trucks, 7.4ms\n", "Speed: 1.4ms preprocess, 7.4ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/PhilippineAmbulance172_jpeg_jpg.rf.fb459d1c3912bd792c67a0f384e062a9.jpg: 640x640 1 Aambulance, 8.2ms\n", "Speed: 1.5ms preprocess, 8.2ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/QKMXG6NZWIC1_jpg.rf.f5e6784d0dedd80f161d8e7f44767221.jpg: 640x640 1 Aambulance, 7.9ms\n", "Speed: 1.4ms preprocess, 7.9ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/P8OCCIMWP5DI_jpg.rf.04f926e09bdbda9cd726e5b6ac751119.jpg: 640x640 1 Aambulance, 7.6ms\n", "Speed: 1.5ms preprocess, 7.6ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/P6LLJNQ7Y6YM_jpg.rf.96c476ca31a9cda32be47b5648a82815.jpg: 640x640 1 Aambulance, 7.6ms\n", "Speed: 1.4ms preprocess, 7.6ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/OBW5KPZ0ATMX_jpg.rf.4c70be6d69c2aa155ee8eced68d042b7.jpg: 640x640 1 Aambulance, 7.8ms\n", "Speed: 1.5ms preprocess, 7.8ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 3/10 2.46G 0.9809 0.8887 1.702 18 640: 100%|██████████| 437/437 [02:18<00:00, 3.15it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 63/63 [00:21<00:00, 2.90it/s]\n", " all 1998 2296 0.732 0.684 0.747 0.504\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/OBVS0EPDB12R_jpg.rf.a346a285352c7a0c6f43cfb3124e9d1a.jpg: 640x640 1 Aambulance, 28.8ms\n", "Speed: 1.9ms preprocess, 28.8ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/OB8NP76GBBQS_jpg.rf.191876645f3b834af0ff8e44edfb57bd.jpg: 640x640 1 Aambulance, 12.9ms\n", "Speed: 1.9ms preprocess, 12.9ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/O88W2D6WZN8C_jpg.rf.8ec60b7976badaa308e1f87c74c63202.jpg: 640x640 1 Aambulance, 7.7ms\n", "Speed: 1.3ms preprocess, 7.7ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/O7YH6VBBRLD3_jpg.rf.3d0712c9a138f2caa54fec461ac35651.jpg: 640x640 1 Aambulance, 7.7ms\n", "Speed: 1.4ms preprocess, 7.7ms inference, 1.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/O5Y0S90Z1HAI_jpg.rf.44f62f9e519aff986cb3760f02e1dc82.jpg: 640x640 1 Aambulance, 7.7ms\n", "Speed: 1.4ms preprocess, 7.7ms inference, 1.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/O48F57CKYZWJ_jpg.rf.cd19ec518b26971dceccf4882f004c88.jpg: 640x640 1 Aambulance, 7.7ms\n", "Speed: 1.3ms preprocess, 7.7ms inference, 1.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/O48F57CKYZWJ_jpg.rf.69226db3b73ef6c72737268c1cb23825.jpg: 640x640 1 Aambulance, 14.3ms\n", "Speed: 2.0ms preprocess, 14.3ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/O474CUSSI6KS_jpg.rf.d83afce64ce8cbeca4f7915aa62b6452.jpg: 640x640 1 Aambulance, 10.0ms\n", "Speed: 1.6ms preprocess, 10.0ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/O2UFXOVUQEWO_jpg.rf.49dafeda3c81f3de81dee2893f111689.jpg: 640x640 2 Aambulances, 10.2ms\n", "Speed: 1.8ms preprocess, 10.2ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/O0NVXBEA8PXW_jpg.rf.c9213e5184c94e14b6dc474799ba07fd.jpg: 640x640 1 Aambulance, 12.9ms\n", "Speed: 1.6ms preprocess, 12.9ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/O05JT5MH4CO0_jpg.rf.23e4d281a890eb2fb2ec868c0ada6ddd.jpg: 640x640 1 Aambulance, 14.2ms\n", "Speed: 1.7ms preprocess, 14.2ms inference, 3.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/NZTTJ1PKGT86_jpg.rf.2cd386a4902c90985e53df40ae09f26e.jpg: 640x640 1 Aambulance, 13.8ms\n", "Speed: 1.7ms preprocess, 13.8ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/NZATJD6G1YLA_jpg.rf.86a8397e4d5d4c0b8d9da885345a509b.jpg: 640x640 1 Aambulance, 10.4ms\n", "Speed: 1.8ms preprocess, 10.4ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/NZATJD6G1YLA_jpg.rf.2b3ebdadbe59c51236a0808bb3ff1755.jpg: 640x640 1 Aambulance, 11.8ms\n", "Speed: 1.7ms preprocess, 11.8ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/NXGGAMFHZ2YV_jpg.rf.c048a4a528fc5c1415f86e93be7e24bb.jpg: 640x640 1 Aambulance, 13.8ms\n", "Speed: 1.8ms preprocess, 13.8ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/NWRDHV1KFC5X_jpg.rf.14e14b5307f82d2642dca1eb80666e50.jpg: 640x640 7 Aambulances, 8.2ms\n", "Speed: 1.5ms preprocess, 8.2ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/NT5ZD9D0JGII_jpg.rf.b9b424654631ae86c59cca6370ca3d7c.jpg: 640x640 1 Aambulance, 8.0ms\n", "Speed: 1.5ms preprocess, 8.0ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/NSKSFRT0E3WC_jpg.rf.d231ddea08429bd2818f3dbed4a5a5f6.jpg: 640x640 2 Aambulances, 7.9ms\n", "Speed: 1.4ms preprocess, 7.9ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/NSKSFRT0E3WC_jpg.rf.046a10a3ba0961b8bec5d66a6d20bf91.jpg: 640x640 2 Aambulances, 8.9ms\n", "Speed: 1.5ms preprocess, 8.9ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/NORPY2K39BYF_jpg.rf.990be3a98bb78a4815a18bddc73e23ae.jpg: 640x640 1 Aambulance, 8.1ms\n", "Speed: 1.5ms preprocess, 8.1ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/NNS7O3F11DIG_jpg.rf.c2a615f8a468384cf2ad255d9b49d24c.jpg: 640x640 1 Aambulance, 8.0ms\n", "Speed: 1.5ms preprocess, 8.0ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/NKHEC984L6LT_jpg.rf.3817b3a340e40c4302b0af797fe059a1.jpg: 640x640 1 Aambulance, 7.6ms\n", "Speed: 1.4ms preprocess, 7.6ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/NKCP4TH16RJ1_jpg.rf.e8eee41d35c1abd50f9d8cd4bc297a0a.jpg: 640x640 3 Aambulances, 7.6ms\n", "Speed: 1.4ms preprocess, 7.6ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/NKCEB13WEO4H_jpg.rf.5eee7bd06023e6c96ee8887f4828ed85.jpg: 640x640 1 Aambulance, 8.1ms\n", "Speed: 1.4ms preprocess, 8.1ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/NKCEB13WEO4H_jpg.rf.57986ed73d6aec98e4a9adac2ec7590e.jpg: 640x640 1 Aambulance, 7.7ms\n", "Speed: 1.4ms preprocess, 7.7ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/NGIE3J2EBKQF_jpg.rf.952389aac4d12372138d9c687ba2c7a0.jpg: 640x640 2 Aambulances, 8.0ms\n", "Speed: 1.4ms preprocess, 8.0ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/OEUTUTDCIL0C_jpg.rf.6999865781ccbf4f3a6007ee86974d3a.jpg: 640x640 5 Aambulances, 8.0ms\n", "Speed: 1.4ms preprocess, 8.0ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/P8L8LTSRWUWA_jpg.rf.de97759276a178a7785b2b1676ce603d.jpg: 640x640 1 Aambulance, 7.8ms\n", "Speed: 1.4ms preprocess, 7.8ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/OFUWYHNMLHU9_jpg.rf.a538bd6679b2bbb2898053e6e81331d8.jpg: 640x640 1 Aambulance, 8.3ms\n", "Speed: 1.4ms preprocess, 8.3ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/OKECDPGMRJOK_jpg.rf.bae43a30ba872cc6da795575455df9a7.jpg: 640x640 1 Aambulance, 10.9ms\n", "Speed: 1.8ms preprocess, 10.9ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/P6LLJNQ7Y6YM_jpg.rf.84b116604559e1bf180b493b8084c5f3.jpg: 640x640 1 Aambulance, 13.2ms\n", "Speed: 1.9ms preprocess, 13.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/P6LLJNQ7Y6YM_jpg.rf.3a691321e88c578958e3bc8a28ab4efa.jpg: 640x640 1 Aambulance, 14.7ms\n", "Speed: 1.7ms preprocess, 14.7ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 4/10 2.47G 0.9336 0.7938 1.653 16 640: 100%|██████████| 437/437 [02:18<00:00, 3.15it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 63/63 [00:22<00:00, 2.78it/s]\n", " all 1998 2296 0.855 0.809 0.877 0.648\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/P5TFFJ895I9I_jpg.rf.7ed23b647bc9e8e40cd41d5c746f79bc.jpg: 640x640 4 Aambulances, 26.9ms\n", "Speed: 2.0ms preprocess, 26.9ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/P3SV9XNTICKN_jpg.rf.5de433b7b132a8c3181b4b75029fa2cb.jpg: 640x640 1 Aambulance, 15.4ms\n", "Speed: 1.9ms preprocess, 15.4ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/P3JA1PCOMTBG_jpg.rf.7e3bfb1553d22ae188fc4bcf7d659388.jpg: 640x640 1 Aambulance, 8.5ms\n", "Speed: 1.5ms preprocess, 8.5ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/P0ON7FOSK50O_jpg.rf.c31d59a6d00eca4ad35bd3d533000f79.jpg: 640x640 2 Aambulances, 8.2ms\n", "Speed: 1.3ms preprocess, 8.2ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/OZPLJJX1QGOO_jpg.rf.eace0ca807322be52d0c0914ab5c81de.jpg: 640x640 1 Aambulance, 7.8ms\n", "Speed: 1.4ms preprocess, 7.8ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/OU0E0R403DQM_jpg.rf.c30ce79fa6fd076c06b4d25b23e76d43.jpg: 640x640 1 Aambulance, 7.9ms\n", "Speed: 1.4ms preprocess, 7.9ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/OU0E0R403DQM_jpg.rf.20b3163d57d8b4c1464ad85ba18f7901.jpg: 640x640 1 Aambulance, 12.1ms\n", "Speed: 1.5ms preprocess, 12.1ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/OTJO4YQYGB48_jpg.rf.498828d339defbe8fc2818a060fd3571.jpg: 640x640 1 Aambulance, 8.3ms\n", "Speed: 1.5ms preprocess, 8.3ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/OT5PMXKK241W_jpg.rf.5d7e45bcbb6dfdbd5a49eb9810010f09.jpg: 640x640 1 Aambulance, 8.1ms\n", "Speed: 1.4ms preprocess, 8.1ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/OT3O3V3IZKN2_jpg.rf.f68cb78bdf62f26ef6f19d2c5d3d7d82.jpg: 640x640 3 Aambulances, 8.3ms\n", "Speed: 1.5ms preprocess, 8.3ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/OT3O3V3IZKN2_jpg.rf.acbc8fc54f8b31b2291d12dba5235236.jpg: 640x640 1 Aambulance, 7.7ms\n", "Speed: 1.4ms preprocess, 7.7ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/OT3O3V3IZKN2_jpg.rf.029badaa7727d919b235ed1e03ce8cf6.jpg: 640x640 2 Aambulances, 7.8ms\n", "Speed: 1.4ms preprocess, 7.8ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/OSYXW82YKW9Z_jpg.rf.72461c9b2d854e686ecd393d5a783940.jpg: 640x640 1 Aambulance, 9.4ms\n", "Speed: 1.7ms preprocess, 9.4ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/OR239OILMDJ7_jpg.rf.e3b7631801a259a3f97239a9dc9737d5.jpg: 640x640 1 Aambulance, 8.2ms\n", "Speed: 1.4ms preprocess, 8.2ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/OQF1606WDSX5_jpg.rf.791137f376ece243b17057d4ce8f44a2.jpg: 640x640 1 Aambulance, 7.8ms\n", "Speed: 1.4ms preprocess, 7.8ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/OQ024G1XX68Z_jpg.rf.232fcd3094595e3e67b59541adc846c2.jpg: 640x640 1 Aambulance, 8.0ms\n", "Speed: 1.5ms preprocess, 8.0ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/OPLLA9YBBU7E_jpg.rf.db6cca12f139e3dd7e9f3e9e5aeb4d73.jpg: 640x640 4 Aambulances, 7.5ms\n", "Speed: 1.4ms preprocess, 7.5ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/OPLLA9YBBU7E_jpg.rf.6c2e34f20ebb81b9df9f8da27d9c9c09.jpg: 640x640 6 Aambulances, 8.9ms\n", "Speed: 1.5ms preprocess, 8.9ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/OOYQGP26NY6B_jpg.rf.aae7f6fe5c43329055d8c1462badfc91.jpg: 640x640 1 Aambulance, 8.5ms\n", "Speed: 1.5ms preprocess, 8.5ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/OOYQGP26NY6B_jpg.rf.1b309a0b9f58fa55bc2a098e3fddf6cd.jpg: 640x640 1 Aambulance, 7.8ms\n", "Speed: 1.3ms preprocess, 7.8ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/OMD6KRC94U2D_jpg.rf.1276bba4ecb32dfcca6cee9a02d0c1aa.jpg: 640x640 2 Aambulances, 8.2ms\n", "Speed: 1.5ms preprocess, 8.2ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/OM2W7J1X1HI6_jpg.rf.14514504ba5040e82fc31d904befdb39.jpg: 640x640 1 Aambulance, 7.7ms\n", "Speed: 1.6ms preprocess, 7.7ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/OKZK611KK7EW_jpg.rf.3e6bb27b8b8391aff37694c4b956279a.jpg: 640x640 2 Aambulances, 8.3ms\n", "Speed: 1.6ms preprocess, 8.3ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/OKFYWWVC1O3S_jpg.rf.988d970877f7676007c9ed44d7b34cbb.jpg: 640x640 3 Aambulances, 16.3ms\n", "Speed: 1.6ms preprocess, 16.3ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/OKFYWWVC1O3S_jpg.rf.8cdc8a55ec6ffc0b54c891c98b71ee2e.jpg: 640x640 3 Aambulances, 16.2ms\n", "Speed: 1.9ms preprocess, 16.2ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/OJGQ5RV6XGTC_jpg.rf.b7989c3be7ff6bb9ea5664db7f7ddea2.jpg: 640x640 1 Aambulance, 10.4ms\n", "Speed: 1.6ms preprocess, 10.4ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/QKMXG6NZWIC1_jpg.rf.fb94a70011c2d8a0a75b1e6c1873b76d.jpg: 640x640 4 Aambulances, 9.9ms\n", "Speed: 1.7ms preprocess, 9.9ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/QKTUC69E6GSZ_jpg.rf.1d56a1093857bc84e46c7ec3594864cd.jpg: 640x640 1 Aambulance, 10.8ms\n", "Speed: 1.6ms preprocess, 10.8ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/QKTUC69E6GSZ_jpg.rf.737823924a1c7a2f2f116bfef79edb69.jpg: 640x640 1 Aambulance, 11.7ms\n", "Speed: 1.7ms preprocess, 11.7ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/T3437AOS25QQ_jpg.rf.2669db1d129494d51412b07fc369d98d.jpg: 640x640 2 Aambulances, 14.5ms\n", "Speed: 1.8ms preprocess, 14.5ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/T3437AOS25QQ_jpg.rf.1e409f559e15e7779e788c46256e10d8.jpg: 640x640 1 Aambulance, 13.7ms\n", "Speed: 1.7ms preprocess, 13.7ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/T3437AOS25QQ_jpg.rf.1ca67645da123a68caab60cd3f0938ed.jpg: 640x640 2 Aambulances, 14.6ms\n", "Speed: 1.8ms preprocess, 14.6ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 5/10 2.48G 0.8919 0.7336 1.609 16 640: 100%|██████████| 437/437 [02:19<00:00, 3.12it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 63/63 [00:22<00:00, 2.80it/s]\n", " all 1998 2296 0.873 0.816 0.882 0.656\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/T0OWONRAKFZ1_jpg.rf.b41db5c07ad61eff64108f0f19c0d134.jpg: 640x640 2 Aambulances, 26.2ms\n", "Speed: 1.8ms preprocess, 26.2ms inference, 10.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/T099UG5TYH9X_jpg.rf.e66822b74624fb44b7e935b9bb525bf6.jpg: 640x640 1 Aambulance, 14.3ms\n", "Speed: 2.0ms preprocess, 14.3ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/Suzuki-Bolan-Ambulance-01_jpg.rf.3ead6d4933be18650ea267f1b790ffde.jpg: 640x640 1 Aambulance, 8.4ms\n", "Speed: 1.5ms preprocess, 8.4ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/SYWCDPK8QZ2V_jpg.rf.aea20520ff5e304beefeba0d65dcbcf7.jpg: 640x640 1 Aambulance, 7.8ms\n", "Speed: 1.5ms preprocess, 7.8ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/SWG5P0HFQ4UB_jpg.rf.a74bbcfc176132e23233c5eef9629064.jpg: 640x640 1 Aambulance, 7.7ms\n", "Speed: 1.5ms preprocess, 7.7ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/SWG5P0HFQ4UB_jpg.rf.8008321e9890857bc9cd9285d82aa044.jpg: 640x640 1 Aambulance, 8.5ms\n", "Speed: 1.5ms preprocess, 8.5ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/SVACNIGNZPL3_jpg.rf.f30b6b8ed9497bb85fd936ed161a1e17.jpg: 640x640 4 Aambulances, 8.0ms\n", "Speed: 1.4ms preprocess, 8.0ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/SV0INF1DKDED_jpg.rf.32518c1a9a2b8847095c40c12c1eaedf.jpg: 640x640 1 Aambulance, 8.3ms\n", "Speed: 1.5ms preprocess, 8.3ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/SSVV7N6BRH5E_jpg.rf.ba1e1257944d297e79cc69eb0493af80.jpg: 640x640 2 Aambulances, 8.0ms\n", "Speed: 1.6ms preprocess, 8.0ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/SSR7IKKPUR44_jpg.rf.9919522a3120a6d2b2b675d2dcd14ca8.jpg: 640x640 1 Aambulance, 9.4ms\n", "Speed: 1.5ms preprocess, 9.4ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/SS2AYAKU7IVC_jpg.rf.2aeb152814ea8013e913bb21677a599c.jpg: 640x640 2 Aambulances, 7.7ms\n", "Speed: 1.4ms preprocess, 7.7ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/SRXXTJQF688B_jpg.rf.290c82215dbfcadadaf345e37a663337.jpg: 640x640 3 Aambulances, 8.1ms\n", "Speed: 1.5ms preprocess, 8.1ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/SRXFBD52SDVL_jpg.rf.b5972473ee1ec465bda78b5ad3e0d67d.jpg: 640x640 2 Aambulances, 7.9ms\n", "Speed: 1.5ms preprocess, 7.9ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/SRGQ6HKWNOYM_jpg.rf.f13acd8ac7aaef6494204e338259d863.jpg: 640x640 1 Aambulance, 8.0ms\n", "Speed: 1.5ms preprocess, 8.0ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/SQNLPSU3QQ4H_jpg.rf.d8c7b4a5451304cb010121a3fec72b16.jpg: 640x640 1 Aambulance, 7.9ms\n", "Speed: 1.5ms preprocess, 7.9ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/SQNLPSU3QQ4H_jpg.rf.68cb7485257fe1b0a647b0f363c1917e.jpg: 640x640 1 Aambulance, 8.0ms\n", "Speed: 1.6ms preprocess, 8.0ms inference, 1.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/SOZ75RZYC1CG_jpg.rf.d3e570c078c8506096067e673fb2fb27.jpg: 640x640 5 Aambulances, 7.9ms\n", "Speed: 1.4ms preprocess, 7.9ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/SMNNZRU2XJGS_jpg.rf.41a8cbee3e071768fb1be4bdbe90edd6.jpg: 640x640 2 Aambulances, 7.6ms\n", "Speed: 1.4ms preprocess, 7.6ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/SMNNZRU2XJGS_jpg.rf.3a3b93e8c5f004cde199313e57111725.jpg: 640x640 5 Aambulances, 8.2ms\n", "Speed: 1.5ms preprocess, 8.2ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/SMM5XUZR514P_jpg.rf.d37b984a7dfe3e50a2691bc552f2dd78.jpg: 640x640 1 Aambulance, 13.8ms\n", "Speed: 1.8ms preprocess, 13.8ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/SMM5XUZR514P_jpg.rf.73123c46699755186bde455e86d4146d.jpg: 640x640 1 Aambulance, 11.6ms\n", "Speed: 1.7ms preprocess, 11.6ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/SMM5XUZR514P_jpg.rf.0d440f673e2432736b5d964780ae031e.jpg: 640x640 1 Aambulance, 11.1ms\n", "Speed: 1.8ms preprocess, 11.1ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/SJX86BZHXY8T_jpg.rf.733882deb561345b91027ddaacc82b29.jpg: 640x640 1 Aambulance, 10.6ms\n", "Speed: 1.7ms preprocess, 10.6ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/SJ7LUWAI6A6M_jpg.rf.c1fde7ddd20527e1b1e9b570024e3069.jpg: 640x640 1 Aambulance, 9.7ms\n", "Speed: 1.7ms preprocess, 9.7ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/T3MAZE72309Q_jpg.rf.ba20ab803f626fbad746a8042d23731d.jpg: 640x640 1 Aambulance, 18.2ms\n", "Speed: 1.8ms preprocess, 18.2ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/SHXA7UUAGSZR_jpg.rf.85da8a925c616828374c5c0b27d62f05.jpg: 640x640 1 Aambulance, 17.5ms\n", "Speed: 1.7ms preprocess, 17.5ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/T3MAZE72309Q_jpg.rf.f7f320b3a6eae21cf9dee4eb32112e11.jpg: 640x640 1 Aambulance, 21.9ms\n", "Speed: 1.9ms preprocess, 21.9ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/T5S1PGFJM65F_jpg.rf.86e5df823aa0a818a3472980343676a9.jpg: 640x640 1 Aambulance, 14.1ms\n", "Speed: 1.8ms preprocess, 14.1ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/TVFPIT4SG76D_jpg.rf.ac8ac57b616cd876a1b8c2915957d778.jpg: 640x640 1 Aambulance, 9.2ms\n", "Speed: 1.5ms preprocess, 9.2ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/TVEBR5KJ5W0R_jpg.rf.aff95a0f6b80a6118fe46d464ddb4d06.jpg: 640x640 1 Aambulance, 8.0ms\n", "Speed: 1.5ms preprocess, 8.0ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/TVEBR5KJ5W0R_jpg.rf.5d5fd4c6eeb17a4d7f1093c6069b79a3.jpg: 640x640 1 Aambulance, 7.7ms\n", "Speed: 1.5ms preprocess, 7.7ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/TUSAIP44FWM2_jpg.rf.f77897d492f805988ddcb509c47181a1.jpg: 640x640 1 Aambulance, 17.6ms\n", "Speed: 1.7ms preprocess, 17.6ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 6/10 2.47G 0.8549 0.6567 1.573 16 640: 100%|██████████| 437/437 [02:18<00:00, 3.15it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 63/63 [00:23<00:00, 2.69it/s]\n", " all 1998 2296 0.9 0.811 0.89 0.667\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/TUSAIP44FWM2_jpg.rf.c8dbe2f1bd86c61a0eb527324243d7c9.jpg: 640x640 1 Aambulance, 12.9ms\n", "Speed: 1.7ms preprocess, 12.9ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/TTNI9462QN4R_jpg.rf.3744c30013ebc5b86340dfb5afe3b113.jpg: 640x640 1 Aambulance, 10.8ms\n", "Speed: 1.9ms preprocess, 10.8ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/TTFJQL2LFBZS_jpg.rf.e7441a7eb40901d90aa946b7db75aff0.jpg: 640x640 1 Aambulance, 13.9ms\n", "Speed: 1.7ms preprocess, 13.9ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/TTFJQL2LFBZS_jpg.rf.62a667172ef9895146ad61ab1aac0f50.jpg: 640x640 2 Aambulances, 8.0ms\n", "Speed: 1.4ms preprocess, 8.0ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/TTFJQL2LFBZS_jpg.rf.3e6b094bb64daed6165bd65368cb3da3.jpg: 640x640 1 Aambulance, 7.9ms\n", "Speed: 1.4ms preprocess, 7.9ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/TRNIKLBWA8I9_jpg.rf.b69229054234b2b8305297c3cf1330bd.jpg: 640x640 1 Aambulance, 8.3ms\n", "Speed: 1.3ms preprocess, 8.3ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/TRNIKLBWA8I9_jpg.rf.a177d534961d110c854a7bce7bd1d9be.jpg: 640x640 1 Aambulance, 7.8ms\n", "Speed: 1.3ms preprocess, 7.8ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/TR37XIP95B2A_jpg.rf.a5afae2d8066f833431c8b536711828f.jpg: 640x640 2 Aambulances, 8.1ms\n", "Speed: 1.3ms preprocess, 8.1ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/TQVVLPSBO0P3_jpg.rf.1fec88aadd758735379d125a6f3058c9.jpg: 640x640 1 Aambulance, 8.3ms\n", "Speed: 1.4ms preprocess, 8.3ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/TQGG6V9CSXY0_jpg.rf.f9dcb0d141adab38af7a36b22d8e9f65.jpg: 640x640 2 Aambulances, 9.9ms\n", "Speed: 1.6ms preprocess, 9.9ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/TMV0CG9YC2XE_jpg.rf.caae495e6f564f21f29f5792395177ed.jpg: 640x640 1 Aambulance, 14.2ms\n", "Speed: 1.5ms preprocess, 14.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/TMMNLZ8ABJHE_jpg.rf.ec4d5af18a4f2aff4088a21290c8165b.jpg: 640x640 1 Aambulance, 8.2ms\n", "Speed: 1.4ms preprocess, 8.2ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/TKPF4X828VDQ_jpg.rf.bbb4e77ac59fea6267cb6a621effa4f7.jpg: 640x640 1 Aambulance, 8.6ms\n", "Speed: 1.7ms preprocess, 8.6ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/TIRDSCMZVH4I_jpg.rf.02224dfe503b34ab8f1d3419a6dd0dbd.jpg: 640x640 1 Aambulance, 9.9ms\n", "Speed: 1.5ms preprocess, 9.9ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/THWKO31COMLV_jpg.rf.f0218005322966b34af3f010d4aa049f.jpg: 640x640 2 Aambulances, 9.3ms\n", "Speed: 1.6ms preprocess, 9.3ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/THWKO31COMLV_jpg.rf.b81986f7a76dc0a0570a021772270c96.jpg: 640x640 1 Aambulance, 12.6ms\n", "Speed: 1.4ms preprocess, 12.6ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/THWKO31COMLV_jpg.rf.69dd8300ecc82abcf6aba116f0f835fa.jpg: 640x640 1 Aambulance, 9.1ms\n", "Speed: 1.5ms preprocess, 9.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/THTDHYVFYPG0_jpg.rf.555bda2702347daad29f2a0f78a48d56.jpg: 640x640 2 Aambulances, 8.1ms\n", "Speed: 1.5ms preprocess, 8.1ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/TFSHQOJFWIYA_jpg.rf.92efc971ce590003d9e2205577d45fdd.jpg: 640x640 1 Aambulance, 7.8ms\n", "Speed: 1.3ms preprocess, 7.8ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/TEEPQXC1K8PO_jpg.rf.3dfbdb5694460516eb9b7aae0dde5100.jpg: 640x640 1 Aambulance, 12.1ms\n", "Speed: 1.7ms preprocess, 12.1ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/TE7GPYIHFJ0F_jpg.rf.947b22c3bfeb3110c1178913b5077712.jpg: 640x640 2 Aambulances, 7.9ms\n", "Speed: 1.5ms preprocess, 7.9ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/TCWJK9HDL8OI_jpg.rf.661507e2e05e586477c7b50766af1f0a.jpg: 640x640 1 Aambulance, 8.4ms\n", "Speed: 1.4ms preprocess, 8.4ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/TBL5X1DICO2F_jpg.rf.764d8f4e435e7df227dc6013f62b9474.jpg: 640x640 1 Aambulance, 8.2ms\n", "Speed: 1.4ms preprocess, 8.2ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/T4QMFYRPL0JL_jpg.rf.c1537767b46da9a5b0545511f3e3fd5f.jpg: 640x640 2 Aambulances, 8.1ms\n", "Speed: 1.3ms preprocess, 8.1ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/SH006265DVYP_jpg.rf.7149a661d5f32cdcf3ee2baabb4a83f2.jpg: 640x640 1 Aambulance, 13.9ms\n", "Speed: 1.5ms preprocess, 13.9ms inference, 3.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/SG5H6DDA2THS_jpg.rf.3ceba10b48686b5a5566764d0f32b7b5.jpg: 640x640 1 Aambulance, 15.0ms\n", "Speed: 1.7ms preprocess, 15.0ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/SDLCQ40Y4HFR_jpg.rf.7a959d4c9ede1036537349f8a9ade281.jpg: 640x640 1 Aambulance, 14.7ms\n", "Speed: 1.6ms preprocess, 14.7ms inference, 6.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/RJUQLYLC5W7P_jpg.rf.608dfa5b365c5c41774a2078ed3a21c1.jpg: 640x640 2 Aambulances, 13.5ms\n", "Speed: 1.6ms preprocess, 13.5ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/RICNWC8H34KM_jpg.rf.b07c54d40d9a7daea89028b659a92d16.jpg: 640x640 1 Aambulance, 9.7ms\n", "Speed: 1.6ms preprocess, 9.7ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/RI1H6A9MZVV3_jpg.rf.9d96dae34b9544f800a35fed424bc0f7.jpg: 640x640 1 Aambulance, 14.3ms\n", "Speed: 1.8ms preprocess, 14.3ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/RDZNQK0UXTVS_jpg.rf.c6824cb8d47d583e17a8a29e936afac7.jpg: 640x640 2 Aambulances, 14.4ms\n", "Speed: 1.6ms preprocess, 14.4ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/RCAYFPZFDUY4_jpg.rf.e1f80280e4dc1474201352017cd4a78c.jpg: 640x640 1 Aambulance, 12.0ms\n", "Speed: 2.1ms preprocess, 12.0ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 7/10 2.47G 0.8263 0.6245 1.542 17 640: 100%|██████████| 437/437 [02:20<00:00, 3.10it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 63/63 [00:22<00:00, 2.79it/s]\n", " all 1998 2296 0.895 0.844 0.914 0.704\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/RA093PLG3VA7_jpg.rf.e51d134e08b2c2a0408c6c24860887cf.jpg: 640x640 2 Aambulances, 18.9ms\n", "Speed: 1.7ms preprocess, 18.9ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/RA093PLG3VA7_jpg.rf.0de82bc2664f53708b95367f91b10470.jpg: 640x640 2 Aambulances, 10.5ms\n", "Speed: 2.6ms preprocess, 10.5ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/R8J1I9FVI9P5_jpg.rf.7accd735ec66da3c631af5d4c839a1ad.jpg: 640x640 1 Aambulance, 8.1ms\n", "Speed: 1.4ms preprocess, 8.1ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/R7QS0A4AQNXT_jpg.rf.0ab08929d9299e3d56eb5e3e1356c09b.jpg: 640x640 1 Aambulance, 8.2ms\n", "Speed: 1.4ms preprocess, 8.2ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/R7QS0A4AQNXT_jpg.rf.086617a97a6a2deff04e0ff315700876.jpg: 640x640 1 Aambulance, 7.6ms\n", "Speed: 1.4ms preprocess, 7.6ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/R707L47VMDOI_jpg.rf.0fd9ef4d534e415ac7414483a8aec5e2.jpg: 640x640 2 Aambulances, 7.8ms\n", "Speed: 1.3ms preprocess, 7.8ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/R6ZE8KJXLA6G_jpg.rf.5e85e9e08926f6e8ce9a345b1a41cc87.jpg: 640x640 1 Aambulance, 9.9ms\n", "Speed: 1.5ms preprocess, 9.9ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/R64N8I7ABXBP_jpg.rf.c7a877ced95e3ae7224d0d8c9ea67192.jpg: 640x640 1 Aambulance, 7.7ms\n", "Speed: 1.4ms preprocess, 7.7ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/R64N8I7ABXBP_jpg.rf.aaed086807f2c96e38da555947cea498.jpg: 640x640 1 Aambulance, 7.6ms\n", "Speed: 1.5ms preprocess, 7.6ms inference, 3.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/R3TK1WGN38XL_jpg.rf.f5e01fe5ea004c70e5ef06b1a6d1f145.jpg: 640x640 1 Aambulance, 8.0ms\n", "Speed: 1.5ms preprocess, 8.0ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/R2V8UC55CF0U_jpg.rf.bc318dc79d002a22c2fe50819c7ece1d.jpg: 640x640 1 Aambulance, 8.2ms\n", "Speed: 1.4ms preprocess, 8.2ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/R2V8UC55CF0U_jpg.rf.ac887d26e2f11d9a445a9e1457175555.jpg: 640x640 1 Aambulance, 8.0ms\n", "Speed: 1.4ms preprocess, 8.0ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/R2HC65IEX8PS_jpg.rf.769f2f023e05c6755eaca6f58643ba12.jpg: 640x640 1 Aambulance, 7.5ms\n", "Speed: 1.4ms preprocess, 7.5ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/R047D3MV4UKO_jpg.rf.b624265b227a1aad72dd250293d3ceab.jpg: 640x640 3 Aambulances, 7.9ms\n", "Speed: 1.5ms preprocess, 7.9ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/R047D3MV4UKO_jpg.rf.41e149fede5f588426500bbb9e506f88.jpg: 640x640 2 Aambulances, 7.7ms\n", "Speed: 1.4ms preprocess, 7.7ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/QUBJ53YTK3U7_jpg.rf.496eec850f2d5cdbfe1cf49a28e0d2da.jpg: 640x640 1 Aambulance, 10.6ms\n", "Speed: 1.3ms preprocess, 10.6ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/QU9JC807B60M_jpg.rf.6412e90d9a99899129d65dbbc570bb50.jpg: 640x640 1 Aambulance, 7.8ms\n", "Speed: 1.4ms preprocess, 7.8ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/QU9JC807B60M_jpg.rf.4c6d5c4ea5048a5f594515b81b8929de.jpg: 640x640 1 Aambulance, 7.9ms\n", "Speed: 1.4ms preprocess, 7.9ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/QOA35MLQK9OJ_jpg.rf.c6576f35181ad8a8aec0ba99f2c3a8a5.jpg: 640x640 1 Aambulance, 7.7ms\n", "Speed: 1.4ms preprocess, 7.7ms inference, 1.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/QOA35MLQK9OJ_jpg.rf.b540e532b230ad68c9b73901864bb6c0.jpg: 640x640 1 Aambulance, 8.1ms\n", "Speed: 1.4ms preprocess, 8.1ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/QNVX8T7IDYAW_jpg.rf.11c1604e6fe8254365b4a639abeef155.jpg: 640x640 1 Aambulance, 8.2ms\n", "Speed: 1.4ms preprocess, 8.2ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/QKTUC69E6GSZ_jpg.rf.bb378ac6d06da26eb052f8b0d8b47ba6.jpg: 640x640 1 Aambulance, 8.1ms\n", "Speed: 1.3ms preprocess, 8.1ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/RL1Q66Y86H8Q_jpg.rf.13502df2154348538e86b52493501911.jpg: 640x640 1 Aambulance, 8.0ms\n", "Speed: 1.6ms preprocess, 8.0ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/RL1Q66Y86H8Q_jpg.rf.4c0c2ceae5a72ad336948394b443aa73.jpg: 640x640 1 Aambulance, 7.6ms\n", "Speed: 1.3ms preprocess, 7.6ms inference, 1.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/RQF15OGDI9VS_jpg.rf.e4afa34592cd5367f0cc387e76f9bc55.jpg: 640x640 1 Aambulance, 8.3ms\n", "Speed: 1.4ms preprocess, 8.3ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/RQY5OXV2SRU6_jpg.rf.153a749de4d9b91186543cd8edf46feb.jpg: 640x640 1 Aambulance, 8.1ms\n", "Speed: 1.3ms preprocess, 8.1ms inference, 1.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/SBBGTMKFQ377_jpg.rf.2c8a827ed17fa85968bd7d582ff1b168.jpg: 640x640 1 Aambulance, 8.2ms\n", "Speed: 1.5ms preprocess, 8.2ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/SB3Z67V6YRC2_jpg.rf.8096e1dec9d288feec1afa25238500d7.jpg: 640x640 1 Aambulance, 7.7ms\n", "Speed: 1.4ms preprocess, 7.7ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/SAGE9O8ALPDI_jpg.rf.c916034c7e1df78b411928b5b31ad296.jpg: 640x640 1 Aambulance, 8.0ms\n", "Speed: 1.4ms preprocess, 8.0ms inference, 1.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/S9KHPGKM7F1U_jpg.rf.401db8b0a962f1eabcf63b9a43d194fa.jpg: 640x640 2 Aambulances, 12.6ms\n", "Speed: 1.6ms preprocess, 12.6ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/S8TPZEDJUSWT_jpg.rf.c5283e9bb29c5c9658a2f2965d0a0885.jpg: 640x640 1 Aambulance, 7.7ms\n", "Speed: 1.4ms preprocess, 7.7ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/S8TPZEDJUSWT_jpg.rf.5d0363548fd2e31d2f4fc8157df32771.jpg: 640x640 1 Aambulance, 7.6ms\n", "Speed: 1.4ms preprocess, 7.6ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 8/10 2.47G 0.7811 0.5625 1.494 16 640: 100%|██████████| 437/437 [02:22<00:00, 3.07it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 63/63 [00:21<00:00, 2.91it/s]\n", " all 1998 2296 0.92 0.873 0.928 0.721\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/S7NN2W84AL9F_jpg.rf.b617a7c6e8b1b32e98f3c2dfae7afd92.jpg: 640x640 1 Aambulance, 21.2ms\n", "Speed: 8.1ms preprocess, 21.2ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/S7NN2W84AL9F_jpg.rf.a41ec2d5c5494d22418b4e63f38b67a3.jpg: 640x640 1 Aambulance, 29.3ms\n", "Speed: 1.8ms preprocess, 29.3ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/S7NN2W84AL9F_jpg.rf.6d64d87689ccb8c8cc74634b834d9b94.jpg: 640x640 1 Aambulance, 12.5ms\n", "Speed: 1.9ms preprocess, 12.5ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/S66XUD40FJAU_jpg.rf.f9261581a18ae9d91baf160016da0f98.jpg: 640x640 1 Aambulance, 10.1ms\n", "Speed: 1.8ms preprocess, 10.1ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/S66XUD40FJAU_jpg.rf.f35ca036792b82d9e44c3e2f58e5f463.jpg: 640x640 1 Aambulance, 9.9ms\n", "Speed: 1.8ms preprocess, 9.9ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/S5N7DVMF41AU_jpg.rf.7aa591c4b89a14ff7b4519f668572029.jpg: 640x640 1 Aambulance, 14.8ms\n", "Speed: 1.7ms preprocess, 14.8ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/S4G3HTDYBGZV_jpg.rf.360a00b1747abf53b5efa87796d9ed93.jpg: 640x640 1 Aambulance, 12.2ms\n", "Speed: 2.1ms preprocess, 12.2ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/NBAUVH2ZJD1C_jpg.rf.0dafc6f48586ef3dff1428c0538019da.jpg: 640x640 1 Aambulance, 15.7ms\n", "Speed: 3.7ms preprocess, 15.7ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/S4CVBN3D0O25_jpg.rf.b8035386e272b4ebfd3eb331d17daab7.jpg: 640x640 3 Aambulances, 12.6ms\n", "Speed: 1.9ms preprocess, 12.6ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/S15CIP2VW8JF_jpg.rf.22ced526577416bb72a45b34d067d7c1.jpg: 640x640 1 Aambulance, 13.3ms\n", "Speed: 1.8ms preprocess, 13.3ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/S0VH9WYYMFDZ_jpg.rf.91b228cfe5cd2f61f0ae800534efac99.jpg: 640x640 1 Aambulance, 9.5ms\n", "Speed: 1.4ms preprocess, 9.5ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/RZCLDEUA93HT_jpg.rf.bdd6393cda9701ba9f7573dee21a83e3.jpg: 640x640 1 Aambulance, 8.0ms\n", "Speed: 1.4ms preprocess, 8.0ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/RZCLDEUA93HT_jpg.rf.9437d109ea96e0f77286fb2f6a5f225b.jpg: 640x640 1 Aambulance, 9.0ms\n", "Speed: 1.7ms preprocess, 9.0ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/RYWVR05ZDEY5_jpg.rf.86cc6a66e542df2941dee283a2a0ef1c.jpg: 640x640 1 Aambulance, 8.0ms\n", "Speed: 1.5ms preprocess, 8.0ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/RYWVR05ZDEY5_jpg.rf.76bfbbd510c62eff52821efc3e835ec4.jpg: 640x640 1 Aambulance, 8.0ms\n", "Speed: 1.5ms preprocess, 8.0ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/RYW1TB1CWJXR_jpg.rf.6d8e3a7bac18120f43d33534cdf48cd2.jpg: 640x640 4 Aambulances, 8.0ms\n", "Speed: 1.4ms preprocess, 8.0ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/RYOO2NMVM4OW_jpg.rf.cbece1f041a288ba21148022bf35359c.jpg: 640x640 1 Aambulance, 8.2ms\n", "Speed: 1.4ms preprocess, 8.2ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/RYOO2NMVM4OW_jpg.rf.81376c93504c9df3c9ca2985a6acd058.jpg: 640x640 1 Aambulance, 7.8ms\n", "Speed: 1.4ms preprocess, 7.8ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/RYOO2NMVM4OW_jpg.rf.6231e0cac140313700fdfb31a3c5de67.jpg: 640x640 1 Aambulance, 8.0ms\n", "Speed: 1.5ms preprocess, 8.0ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/RXD91CASUT2O_jpg.rf.0c3a65ec499acf6e7478fa551b7679a1.jpg: 640x640 1 Aambulance, 7.8ms\n", "Speed: 1.4ms preprocess, 7.8ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/RVXN2PISC24G_jpg.rf.95cdb95d5d2ff435d7782a5424287d3d.jpg: 640x640 1 Aambulance, 9.2ms\n", "Speed: 1.5ms preprocess, 9.2ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/RVM76NFQJ7N6_jpg.rf.51987390cd67232b44cccab45afdc628.jpg: 640x640 1 Aambulance, 8.3ms\n", "Speed: 1.4ms preprocess, 8.3ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/S35WBM1GR3ZG_jpg.rf.32659594f2b53c4dc3a94ee8e1deb644.jpg: 640x640 1 Aambulance, 7.6ms\n", "Speed: 1.4ms preprocess, 7.6ms inference, 1.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/N9YOK59KOGPH_jpg.rf.28081d2e8333c09a56cb2a037fca675b.jpg: 640x640 1 Aambulance, 7.8ms\n", "Speed: 1.4ms preprocess, 7.8ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/N9FEJ14BXYE0_jpg.rf.e085e60d0bb19c9a92acc7e92052f51a.jpg: 640x640 1 Aambulance, 8.2ms\n", "Speed: 1.5ms preprocess, 8.2ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/N96AW947SF2A_jpg.rf.898dc8f110bbc992e7edd32050e97932.jpg: 640x640 1 Aambulance, 8.1ms\n", "Speed: 1.4ms preprocess, 8.1ms inference, 2.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/J-79-_png_jpg.rf.9c8cdadc58ffac87fd7417035b3e5801.jpg: 640x640 1 truck, 8.2ms\n", "Speed: 1.4ms preprocess, 8.2ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/J-71-_png_jpg.rf.92964fef8bdf2c57aec6a6ebb1dfe952.jpg: 640x640 1 truck, 7.9ms\n", "Speed: 1.4ms preprocess, 7.9ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/J-71-_png_jpg.rf.78549e0e7646800c13d2be9e4b3a5dd7.jpg: 640x640 1 truck, 7.8ms\n", "Speed: 1.4ms preprocess, 7.8ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/J-68-_png_jpg.rf.e1ec09e8c7aef1caa839c08c7c768a4b.jpg: 640x640 1 truck, 7.9ms\n", "Speed: 1.4ms preprocess, 7.9ms inference, 1.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/J-66-_png_jpg.rf.5192da84cc883c8797f4930bfa9030ff.jpg: 640x640 1 truck, 8.1ms\n", "Speed: 1.6ms preprocess, 8.1ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/J-61-_png_jpg.rf.4aaec9a726b11ab7e5f5ba62adb49196.jpg: 640x640 1 truck, 8.0ms\n", "Speed: 1.4ms preprocess, 8.0ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 9/10 2.48G 0.7604 0.5324 1.471 16 640: 100%|██████████| 437/437 [02:22<00:00, 3.07it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 63/63 [00:21<00:00, 2.96it/s]\n", " all 1998 2296 0.912 0.875 0.931 0.733\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/J-6-_png_jpg.rf.4aac11384654b61c660fa753d25fd5f5.jpg: 640x640 1 truck, 15.4ms\n", "Speed: 1.7ms preprocess, 15.4ms inference, 5.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/J-57-_png_jpg.rf.f8d6dc42c1b0369d1d3908439610354c.jpg: 640x640 1 truck, 14.4ms\n", "Speed: 1.8ms preprocess, 14.4ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/J-55-_png_jpg.rf.8bba06ed18bc3cd5308c055a6bbec8b4.jpg: 640x640 1 truck, 10.9ms\n", "Speed: 1.8ms preprocess, 10.9ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/J-45-_png_jpg.rf.9edda3d2b1929cdc5c0f83904055456a.jpg: 640x640 1 truck, 11.7ms\n", "Speed: 1.8ms preprocess, 11.7ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/J-43-_png_jpg.rf.88679e619e74140f35088ddf5ab958a9.jpg: 640x640 1 truck, 14.0ms\n", "Speed: 1.8ms preprocess, 14.0ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/J-41-_png_jpg.rf.1077f1bcce887ad1218e897fee86c828.jpg: 640x640 1 truck, 13.4ms\n", "Speed: 1.7ms preprocess, 13.4ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/J-27-_png_jpg.rf.b3e3eafda3af4ab8bcd9baa8c09b5826.jpg: 640x640 1 truck, 10.5ms\n", "Speed: 1.6ms preprocess, 10.5ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/J-21-_png_jpg.rf.bcc0029c0ea145660d02426815dc0018.jpg: 640x640 1 truck, 11.2ms\n", "Speed: 1.8ms preprocess, 11.2ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/J-18-_png_jpg.rf.aba61c4aeeaa0928fa7c5d99a1015d18.jpg: 640x640 1 truck, 13.6ms\n", "Speed: 1.6ms preprocess, 13.6ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/J-134-_png_jpg.rf.7140ea81b3c7cbc033a1256857e35e29.jpg: 640x640 1 Aambulance, 1 truck, 13.6ms\n", "Speed: 2.1ms preprocess, 13.6ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/J-133-_png_jpg.rf.8374f5c5c488953582725998585ce9e0.jpg: 640x640 1 truck, 11.9ms\n", "Speed: 1.9ms preprocess, 11.9ms inference, 5.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/J-132-_png_jpg.rf.bc5a1653e26214a27a085285bd8e9fc6.jpg: 640x640 1 truck, 18.4ms\n", "Speed: 3.9ms preprocess, 18.4ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/J-126-_png_jpg.rf.f83355815f50d047496171c471fe4050.jpg: 640x640 1 truck, 14.8ms\n", "Speed: 1.7ms preprocess, 14.8ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/J-106-_png_jpg.rf.9e05d678c905961003baabda0c9c074c.jpg: 640x640 1 truck, 15.0ms\n", "Speed: 1.7ms preprocess, 15.0ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/IZYDX026M7ZL_jpg.rf.975ae131b9205e52c3bb08d2b1e4d92c.jpg: 640x640 2 Aambulances, 13.6ms\n", "Speed: 1.7ms preprocess, 13.6ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/IZXO9CTSC9SG_jpg.rf.e93c4f6bba250f8c027c656d5d353229.jpg: 640x640 1 Aambulance, 15.6ms\n", "Speed: 5.8ms preprocess, 15.6ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/IXV04U2KRI6H_jpg.rf.d7efd44f8fa228384155c1d4c342496e.jpg: 640x640 1 Aambulance, 1 truck, 13.5ms\n", "Speed: 1.9ms preprocess, 13.5ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/IXHCDUDC3W89_jpg.rf.724b63b4886e9d7f74c54ff4a4434743.jpg: 640x640 1 Aambulance, 14.8ms\n", "Speed: 1.8ms preprocess, 14.8ms inference, 4.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/IWUDR17000SJ_jpg.rf.060e7986ee1e0d6a829efaaf1b5ad60f.jpg: 640x640 1 Aambulance, 13.1ms\n", "Speed: 1.7ms preprocess, 13.1ms inference, 5.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/IWN6B1PRCKHL_jpg.rf.4617503b9630fcc7690a6c9ecd7898aa.jpg: 640x640 1 Aambulance, 10.4ms\n", "Speed: 5.1ms preprocess, 10.4ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/IWHVK0A6LRQA_jpg.rf.78737816b44bddcfd144cd74851c07b0.jpg: 640x640 4 Aambulances, 12.5ms\n", "Speed: 1.8ms preprocess, 12.5ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/J-84-_png_jpg.rf.478f82a37a3d7f518593401076e51df3.jpg: 640x640 1 Aambulance, 1 truck, 14.1ms\n", "Speed: 1.8ms preprocess, 14.1ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/IR0JPB13LSFS_jpg.rf.114f4e3a36a74d82a35422cdab7e9a9c.jpg: 640x640 1 Aambulance, 8.6ms\n", "Speed: 1.7ms preprocess, 8.6ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/J-9-_png_jpg.rf.854d51217b636d95781afef9a3fd9fb8.jpg: 640x640 1 Aambulance, 8.1ms\n", "Speed: 1.5ms preprocess, 8.1ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/J01TH0PYDCRU_jpg.rf.91cc5489e8e7e135a768a4dcf64f0cc0.jpg: 640x640 1 Aambulance, 7.5ms\n", "Speed: 1.3ms preprocess, 7.5ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/JXI0TQUBDC35_jpg.rf.b716f47969f4ecd8495bcd7f482a16d8.jpg: 640x640 17 Aambulances, 8.8ms\n", "Speed: 1.8ms preprocess, 8.8ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/JWR73317X785_jpg.rf.cffd555c10e56e15ed396c695d69a801.jpg: 640x640 1 Aambulance, 8.1ms\n", "Speed: 1.3ms preprocess, 8.1ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/JWR73317X785_jpg.rf.60ea687ddf758eb1cd86672f7d120fa8.jpg: 640x640 1 Aambulance, 7.6ms\n", "Speed: 1.4ms preprocess, 7.6ms inference, 2.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/JWR73317X785_jpg.rf.1e88ef9cf966be65ad1e73a3666d935b.jpg: 640x640 1 Aambulance, 7.6ms\n", "Speed: 1.3ms preprocess, 7.6ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/JWAJCLEWRT4P_jpg.rf.c2df954c609fca85d5ee8bb4afd6a77f.jpg: 640x640 1 Aambulance, 8.0ms\n", "Speed: 1.5ms preprocess, 8.0ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/JVA44QUD6AXV_jpg.rf.cb1b4291426f096279ea65191563334a.jpg: 640x640 1 Aambulance, 13.0ms\n", "Speed: 1.7ms preprocess, 13.0ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/JURCZ6JXS0QW_jpg.rf.d51f78ca674be7797807d3192c87ccfc.jpg: 640x640 1 Aambulance, 9.1ms\n", "Speed: 1.5ms preprocess, 9.1ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", " Epoch GPU_mem box_loss cls_loss dfl_loss Instances Size\n", " 10/10 2.46G 0.7221 0.5023 1.435 21 640: 100%|██████████| 437/437 [02:21<00:00, 3.09it/s]\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 63/63 [00:22<00:00, 2.81it/s]\n", " all 1998 2296 0.939 0.874 0.938 0.752\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/JQN9CL06DX6D_jpg.rf.2e183312165692a9a66f93f748d8903d.jpg: 640x640 1 Aambulance, 22.6ms\n", "Speed: 2.1ms preprocess, 22.6ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/JKOTL7ZP9QM4_jpg.rf.0b3b930db26b3708ea586337d84440bf.jpg: 640x640 1 Aambulance, 11.0ms\n", "Speed: 1.8ms preprocess, 11.0ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/JINBEI-TOPIC_jpg.rf.cd4250ccdfb087e1065f71b841adc6e4.jpg: 640x640 1 truck, 9.3ms\n", "Speed: 1.6ms preprocess, 9.3ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/JIKTFPIXB17K_jpg.rf.3590be86dbf28e9e17bd4d1e2f0c5a69.jpg: 640x640 1 Aambulance, 7.8ms\n", "Speed: 1.4ms preprocess, 7.8ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/JDXG6D6HHGFI_jpg.rf.cf6676d39c63f8479f248af222063208.jpg: 640x640 1 Aambulance, 8.0ms\n", "Speed: 1.4ms preprocess, 8.0ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/JDXG6D6HHGFI_jpg.rf.72e076a2e17111d34c419d6660502d1a.jpg: 640x640 1 Aambulance, 8.7ms\n", "Speed: 1.8ms preprocess, 8.7ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/JCXOH2BMD6GI_jpg.rf.f5be5d39ee5fbc7cc99be4ed0b71309b.jpg: 640x640 1 Aambulance, 8.0ms\n", "Speed: 1.5ms preprocess, 8.0ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/JCXOH2BMD6GI_jpg.rf.81a164f7b1216103232a37ae7272983c.jpg: 640x640 1 Aambulance, 7.5ms\n", "Speed: 1.5ms preprocess, 7.5ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/JBQJI63HIILN_jpg.rf.153c2f8316e4ba029978677e86dfd83e.jpg: 640x640 1 Aambulance, 8.0ms\n", "Speed: 1.4ms preprocess, 8.0ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/JBMKC6T5DPRP_jpg.rf.f6d5ef58fe8be08547f78f5ac23f9bf0.jpg: 640x640 1 Aambulance, 8.6ms\n", "Speed: 1.5ms preprocess, 8.6ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/JBJSS13XXUZ1_jpg.rf.3aad667d397a40bbfd9f900b8c56acad.jpg: 640x640 1 Aambulance, 8.4ms\n", "Speed: 1.4ms preprocess, 8.4ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/J9NMN7E8PXUS_jpg.rf.9aeea7d1b021afa979f9699e4001eeb2.jpg: 640x640 1 Aambulance, 11.5ms\n", "Speed: 1.8ms preprocess, 11.5ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/J95OXUVNAV6Q_jpg.rf.96c1837539dd7492d114fd97b12e7c35.jpg: 640x640 1 Aambulance, 10.7ms\n", "Speed: 1.7ms preprocess, 10.7ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/J7O9TK63MW8S_jpg.rf.d7cf9086170b41fb4ca66a58e33bb0e3.jpg: 640x640 1 Aambulance, 10.6ms\n", "Speed: 1.8ms preprocess, 10.6ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/J7O9TK63MW8S_jpg.rf.5891da64cdaaf71c788c385e83407ad2.jpg: 640x640 1 Aambulance, 10.5ms\n", "Speed: 1.7ms preprocess, 10.5ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/J77QU237F9KA_jpg.rf.548658dca1e2ff558337308b9403df96.jpg: 640x640 1 Aambulance, 9.9ms\n", "Speed: 2.7ms preprocess, 9.9ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/J63DPTC8ZHNK_jpg.rf.a0fcc0bbd2f26057947a22e92a9a9de7.jpg: 640x640 1 Aambulance, 13.5ms\n", "Speed: 2.1ms preprocess, 13.5ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/J54ZLC193X1A_jpg.rf.629ab6cc62ab301fca2eb51966e80c64.jpg: 640x640 1 Aambulance, 12.0ms\n", "Speed: 1.8ms preprocess, 12.0ms inference, 2.6ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/J0YH9RKZKYBC_jpg.rf.413cb927b9f7635c0e88fc799d16a372.jpg: 640x640 1 Aambulance, 13.8ms\n", "Speed: 3.9ms preprocess, 13.8ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/J01TH0PYDCRU_jpg.rf.f831759a8783d9cb5561ac482104ea4c.jpg: 640x640 1 Aambulance, 15.7ms\n", "Speed: 1.9ms preprocess, 15.7ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/J-96-_png_jpg.rf.ce68d7c3520a7af02142317f5a60c970.jpg: 640x640 1 truck, 14.3ms\n", "Speed: 1.9ms preprocess, 14.3ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/IQTPX4QJB3JA_jpg.rf.414b77c50f8828dfb820fa9e07ff2302.jpg: 640x640 1 Aambulance, 8.6ms\n", "Speed: 1.5ms preprocess, 8.6ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/IPEKSYZFJD1I_jpg.rf.ecfd3606ac79cb2f15522fd206c6fc6b.jpg: 640x640 1 Aambulance, 7.8ms\n", "Speed: 1.5ms preprocess, 7.8ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/IN2312OI9IOS_jpg.rf.d4ddfe7988f25956871d4308a2018f56.jpg: 640x640 2 Aambulances, 8.7ms\n", "Speed: 2.1ms preprocess, 8.7ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/I-22-_png_jpg.rf.4f285cedaa24dcdc79bf40af67978e6d.jpg: 640x640 1 truck, 8.1ms\n", "Speed: 1.6ms preprocess, 8.1ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/I-21-_png_jpg.rf.a7bc44e4040586f5f2bacc4bb2d00059.jpg: 640x640 1 truck, 10.0ms\n", "Speed: 1.6ms preprocess, 10.0ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/I-20-_png_jpg.rf.76937e3cd142ae1864e86ec6a037a3a9.jpg: 640x640 1 truck, 7.9ms\n", "Speed: 1.5ms preprocess, 7.9ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/I-20-_png_jpg.rf.18575504a41bf4b43dea7d459f7521ee.jpg: 640x640 1 truck, 7.8ms\n", "Speed: 1.5ms preprocess, 7.8ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/I-12-_png_jpg.rf.fc937c041edb53de58a0257ed776b7a2.jpg: 640x640 1 truck, 7.8ms\n", "Speed: 1.4ms preprocess, 7.8ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/HZ7NHOYBWX0M_jpg.rf.d0ba37019dea48f003b14acb784f93bc.jpg: 640x640 1 Aambulance, 7.7ms\n", "Speed: 1.4ms preprocess, 7.7ms inference, 1.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/HZ0G69XONQXV_jpg.rf.13f19a8d7c683ce5ff5ad1169c479595.jpg: 640x640 2 Aambulances, 7.9ms\n", "Speed: 1.4ms preprocess, 7.9ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/HVD06QOR6UD1_jpg.rf.2897430fdc5fc583fadb40d23db27ef5.jpg: 640x640 1 Aambulance, 10.6ms\n", "Speed: 1.8ms preprocess, 10.6ms inference, 2.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "10 epochs completed in 0.478 hours.\n", "Optimizer stripped from kecilin-tech-assessment/train3/weights/last.pt, 6.2MB\n", "Optimizer stripped from kecilin-tech-assessment/train3/weights/best.pt, 6.2MB\n", "\n", "Validating kecilin-tech-assessment/train3/weights/best.pt...\n", "Ultralytics YOLOv8.0.186 🚀 Python-3.10.12 torch-2.1.0+cu121 CUDA:0 (Tesla T4, 15102MiB)\n", "Model summary (fused): 168 layers, 3006233 parameters, 0 gradients\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 63/63 [00:25<00:00, 2.45it/s]\n", " all 1998 2296 0.94 0.873 0.938 0.752\n", " Aambulance 1998 1980 0.946 0.865 0.951 0.705\n", " truck 1998 316 0.933 0.882 0.925 0.799\n", "Speed: 0.3ms preprocess, 2.4ms inference, 0.0ms loss, 2.2ms postprocess per image\n", "Results saved to \u001b[1mkecilin-tech-assessment/train3\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/HUB7AMCWTJ8N_jpg.rf.6e2c1a280e6b9acde18749dcb7e813d1.jpg: 640x640 4 Aambulances, 21.3ms\n", "Speed: 1.9ms preprocess, 21.3ms inference, 2.5ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/HUB7AMCWTJ8N_jpg.rf.408e5bb8ef62de1a512419c8a4fbdcc2.jpg: 640x640 2 Aambulances, 27.5ms\n", "Speed: 3.9ms preprocess, 27.5ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/HUB7AMCWTJ8N_jpg.rf.08cbc8b2fa58786a343659ea0e0fa14b.jpg: 640x640 2 Aambulances, 10.9ms\n", "Speed: 1.8ms preprocess, 10.9ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/HTB1584MQVXXXXcTXVXXq6xXFXXXy_jpg.rf.af440fc165f58bdccd0dae6a3599f01d.jpg: 640x640 1 truck, 10.9ms\n", "Speed: 2.0ms preprocess, 10.9ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/HRSU88BPETCE_jpg.rf.da8462631f1ebe353ba61be4cad8cec3.jpg: 640x640 2 Aambulances, 13.5ms\n", "Speed: 1.7ms preprocess, 13.5ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/HRSU88BPETCE_jpg.rf.0f2ba39c1ddfa73736794fc9bd0349e9.jpg: 640x640 2 Aambulances, 14.4ms\n", "Speed: 1.8ms preprocess, 14.4ms inference, 2.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/HQTSOC5R9612_jpg.rf.fd236018d7966794e2559cff0bec4529.jpg: 640x640 1 Aambulance, 8.0ms\n", "Speed: 1.6ms preprocess, 8.0ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/HP1X5Y7WKFIW_jpg.rf.bd902e6fb93526bd6cf697ad12694be8.jpg: 640x640 1 Aambulance, 7.8ms\n", "Speed: 1.5ms preprocess, 7.8ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/HO90P9L62WMB_jpg.rf.f89295730725a09e7fb0866c0da4a0ed.jpg: 640x640 1 Aambulance, 8.1ms\n", "Speed: 1.4ms preprocess, 8.1ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/HN8JOVDKHUSY_jpg.rf.fba6e0c1d3cc150f13e740e214ff8a84.jpg: 640x640 1 Aambulance, 8.2ms\n", "Speed: 1.5ms preprocess, 8.2ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/HMJ7VUW7PLUE_jpg.rf.0ddebc30e5cdad76a00d994da0b9a091.jpg: 640x640 1 Aambulance, 8.0ms\n", "Speed: 1.4ms preprocess, 8.0ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/HMJ7VUW7PLUE_jpg.rf.034bb44cb414f698940091d3ff7334ea.jpg: 640x640 1 Aambulance, 7.7ms\n", "Speed: 1.4ms preprocess, 7.7ms inference, 1.7ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/HLUSN3J1OPXA_jpg.rf.26f825d6780f77f2b8482106694e4436.jpg: 640x640 1 Aambulance, 7.9ms\n", "Speed: 1.4ms preprocess, 7.9ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/HKDFQ2ODPQP2_jpg.rf.6a0ffe589f7692f0804f7d646fb60a5f.jpg: 640x640 1 Aambulance, 9.4ms\n", "Speed: 1.8ms preprocess, 9.4ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/HEPATYMFD9N9_jpg.rf.f6d0ade51605488c4a29a7465c6b0921.jpg: 640x640 2 Aambulances, 7.8ms\n", "Speed: 1.4ms preprocess, 7.8ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/HD1FUMQLBJ9W_jpg.rf.fcea0550a3b2b5fa5d3aac515d67404c.jpg: 640x640 1 Aambulance, 11.3ms\n", "Speed: 1.4ms preprocess, 11.3ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/HD1FUMQLBJ9W_jpg.rf.194b608e8935918047f160314e6ac03b.jpg: 640x640 2 Aambulances, 8.9ms\n", "Speed: 1.4ms preprocess, 8.9ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/HC1UWQGUDFB7_jpg.rf.cb37036bfabdaa61ae77873f9204e7fa.jpg: 640x640 1 Aambulance, 10.5ms\n", "Speed: 1.9ms preprocess, 10.5ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/HC1UWQGUDFB7_jpg.rf.0634a04a64b11a16b8f39d70db5ef84c.jpg: 640x640 1 Aambulance, 10.1ms\n", "Speed: 1.7ms preprocess, 10.1ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/I-24-_png_jpg.rf.a302efbee8f64807c94a5805a8634b4a.jpg: 640x640 1 truck, 10.1ms\n", "Speed: 1.7ms preprocess, 10.1ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/I-33-_png_jpg.rf.36759ced7bb52c146442b72f9d24edf4.jpg: 640x640 1 truck, 10.2ms\n", "Speed: 1.6ms preprocess, 10.2ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/I-34-_png_jpg.rf.a5fc4d7a664737751c29357b03d6626c.jpg: 640x640 1 truck, 10.8ms\n", "Speed: 1.7ms preprocess, 10.8ms inference, 2.2ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/I-35-_png_jpg.rf.1cceb5d56e4fa8da7bd42c22a8dc0a39.jpg: 640x640 1 truck, 9.5ms\n", "Speed: 1.6ms preprocess, 9.5ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/IN2312OI9IOS_jpg.rf.9c0fa6054c176015664db9d2a30067f2.jpg: 640x640 3 Aambulances, 14.7ms\n", "Speed: 1.8ms preprocess, 14.7ms inference, 3.0ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/IMG_0564_jpg.rf.c72284997d0877249dc751cf6af23122.jpg: 640x640 1 Aambulance, 10.7ms\n", "Speed: 1.7ms preprocess, 10.7ms inference, 2.3ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/ILZG6SSTQE0C_jpg.rf.46bbffb58f2ce299078a6f88168897f5.jpg: 640x640 1 Aambulance, 11.5ms\n", "Speed: 1.9ms preprocess, 11.5ms inference, 2.4ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/IK82I8QZOO8C_jpg.rf.12aba1ff0ade1e77e74fa6dfb8f6060f.jpg: 640x640 1 Aambulance, 15.1ms\n", "Speed: 1.9ms preprocess, 15.1ms inference, 3.1ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/IHOS3C0GHMXS_jpg.rf.b52a71f6713f38d330c7f48fb2a59185.jpg: 640x640 1 Aambulance, 15.7ms\n", "Speed: 2.3ms preprocess, 15.7ms inference, 2.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/IHLOFIV0LNXC_jpg.rf.e690db0716fe0dc49e820966624e32d5.jpg: 640x640 1 Aambulance, 8.5ms\n", "Speed: 1.5ms preprocess, 8.5ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/IHLOFIV0LNXC_jpg.rf.8605ee27bd284f73f8bdf2ad09c9929c.jpg: 640x640 1 Aambulance, 9.9ms\n", "Speed: 1.5ms preprocess, 9.9ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/IHGH8Y8G14NC_jpg.rf.1a0bb519e0dfcc8c04214ef72015a13d.jpg: 640x640 1 Aambulance, 8.0ms\n", "Speed: 1.4ms preprocess, 8.0ms inference, 1.8ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "\n", "image 1/1 /content/PH-Ambulances-1/valid/images/IDC64X7S75HZ_jpg.rf.63f7d994ab6bbf020a70fbcd10cb882e.jpg: 640x640 1 Aambulance, 8.0ms\n", "Speed: 1.5ms preprocess, 8.0ms inference, 1.9ms postprocess per image at shape (1, 3, 640, 640)\n", "Results saved to \u001b[1mruns/detect/train2\u001b[0m\n", "Ultralytics YOLOv8.0.186 🚀 Python-3.10.12 torch-2.1.0+cu121 CUDA:0 (Tesla T4, 15102MiB)\n", "Model summary (fused): 168 layers, 3006233 parameters, 0 gradients\n", "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/PH-Ambulances-1/valid/labels.cache... 1998 images, 29 backgrounds, 0 corrupt: 100%|██████████| 1998/1998 [00:00(success)." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "

Run history:


lr/pg0▂▆█▇▇▆▅▃▂▁
lr/pg1▂▆█▇▇▆▅▃▂▁
lr/pg2▂▆█▇▇▆▅▃▂▁
metrics/mAP50(B)▃▄▁▆▆▆▇███
metrics/mAP50-95(B)▂▃▁▅▅▆▇▇▇█
metrics/precision(B)▅▄▁▅▆▇▆▇▇█
metrics/recall(B)▂▃▁▆▆▆▇███
model/GFLOPs
model/parameters
model/speed_PyTorch(ms)
train/box_loss██▇▆▅▄▄▂▂▁
train/cls_loss█▄▃▂▂▂▂▁▁▁
train/dfl_loss██▇▆▅▄▄▂▂▁
val/box_loss▇▇█▄▄▄▃▂▂▁
val/cls_loss█▅▆▃▃▂▂▂▁▁
val/dfl_loss▆▆█▄▄▃▂▂▁▁

Run summary:


lr/pg00.0003
lr/pg10.0003
lr/pg20.0003
metrics/mAP50(B)0.9377
metrics/mAP50-95(B)0.75192
metrics/precision(B)0.93971
metrics/recall(B)0.87335
model/GFLOPs0.0
model/parameters3011433
model/speed_PyTorch(ms)2.541
train/box_loss0.72205
train/cls_loss0.50235
train/dfl_loss1.43473
val/box_loss0.89624
val/cls_loss0.54399
val/dfl_loss1.49481

" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run ethereal-waterfall-11 at: https://wandb.ai/nodeflux-internship/kecilin-tech-assessment/runs/jeos7szf
Synced 5 W&B file(s), 19 media file(s), 382 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20240309_121456-jeos7szf/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Initialize YOLO Model\n", "model = YOLO(\"yolov8n.pt\")\n", "\n", "# Add Weights & Biases callback for Ultralytics\n", "add_wandb_callback(model, enable_model_checkpointing=True)\n", "\n", "# Train/fine-tune model\n", "model.train(project=\"kecilin-tech-assessment\", data='/content/PH-Ambulances-1/new_data.yaml', epochs=10, device=[0])\n", "model.val()\n", "\n", "# Finish the W&B run\n", "wandb.finish()" ] }, { "cell_type": "markdown", "metadata": { "id": "93eWzFxhw5Ot" }, "source": [ "# Model Evaluation" ] }, { "cell_type": "markdown", "source": [ "### Evaluate on test set" ], "metadata": { "id": "bh2FD2tj38wQ" } }, { "cell_type": "code", "execution_count": 10, "metadata": { "id": "_6Hm3i4Pw5Ot" }, "outputs": [], "source": [ "model = YOLO('best.pt', task='detect')" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "eXetfgvw0gpM", "outputId": "347c4c7c-a61f-4d0a-a2c3-8fd0c20fd6f5" }, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "Ultralytics YOLOv8.0.186 🚀 Python-3.10.12 torch-2.1.0+cu121 CUDA:0 (Tesla T4, 15102MiB)\n", "Model summary (fused): 168 layers, 3006233 parameters, 0 gradients\n", "Downloading https://ultralytics.com/assets/Arial.ttf to '/root/.config/Ultralytics/Arial.ttf'...\n", "100%|██████████| 755k/755k [00:00<00:00, 32.1MB/s]\n", "\u001b[34m\u001b[1mval: \u001b[0mScanning /content/PH-Ambulances-1/valid/labels... 1998 images, 28 backgrounds, 0 corrupt: 100%|██████████| 1998/1998 [00:01<00:00, 1510.88it/s]\n", "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: /content/PH-Ambulances-1/valid/labels.cache\n", "WARNING ⚠️ Box and segment counts should be equal, but got len(segments) = 1, len(boxes) = 2297. To resolve this only boxes will be used and all segments will be removed. To avoid this please supply either a detect or segment dataset, not a detect-segment mixed dataset.\n", " Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 125/125 [00:24<00:00, 5.15it/s]\n", " all 1998 2297 0.939 0.874 0.938 0.752\n", " Aambulance 1998 1981 0.946 0.865 0.951 0.705\n", " truck 1998 316 0.933 0.883 0.925 0.798\n", "Speed: 0.5ms preprocess, 4.0ms inference, 0.0ms loss, 1.8ms postprocess per image\n", "Results saved to \u001b[1mruns/detect/val\u001b[0m\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [ "ultralytics.utils.metrics.DetMetrics object with attributes:\n", "\n", "ap_class_index: array([0, 1])\n", "box: ultralytics.utils.metrics.Metric object\n", "confusion_matrix: \n", "fitness: 0.7705049125298375\n", "keys: ['metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)']\n", "maps: array([ 0.70542, 0.79838, 0.7519])\n", "names: {0: 'Aambulance', 1: 'truck', 2: 'object'}\n", "plot: True\n", "results_dict: {'metrics/precision(B)': 0.9392765761221349, 'metrics/recall(B)': 0.874065489236353, 'metrics/mAP50(B)': 0.9379743110228055, 'metrics/mAP50-95(B)': 0.7518972015861745, 'fitness': 0.7705049125298375}\n", "save_dir: PosixPath('runs/detect/val')\n", "speed: {'preprocess': 0.4949199783432114, 'inference': 3.970766210699224, 'loss': 0.0024647326082796665, 'postprocess': 1.8141656308560759}" ] }, "metadata": {}, "execution_count": 11 } ], "source": [ "model.val()" ] }, { "cell_type": "markdown", "source": [ "When I tested the model on test set, I got 93.7% mAP@50 and 75.1% map50-9@50-95.\n", "\n", "\n", "See the inference results here https://wandb.ai/nodeflux-internship/kecilin-tech-assessment/reports/Evaluate-on-test-set--Vmlldzo3MDk1MDUx?accessToken=3nd0lq2ii5rbtqp6h80rb6hw6828asm1jthkeompapkgk4cii9kbnuv7hoadge1a\n" ], "metadata": { "id": "N9nch27T3Tox" } }, { "cell_type": "markdown", "source": [ "> **Note**: From the wandb report above, we could see that the model might be biased towards detecting white trucks as ambulance." ], "metadata": { "id": "Mj6A1Fbc_w-M" } }, { "cell_type": "markdown", "source": [ "### WandB Tracking Results" ], "metadata": { "id": "DkmorRd54C86" } }, { "cell_type": "markdown", "source": [ "You can see the full report here: https://api.wandb.ai/links/nodeflux-internship/eiwjg81c" ], "metadata": { "id": "SsH3PZdp7FAb" } }, { "cell_type": "markdown", "source": [ "#### Confusion Matrix" ], "metadata": { "id": "b3H7GOmG4vpS" } }, { "cell_type": "markdown", "source": [ "![image.png]()" ], "metadata": { "id": "_y1h7Hmc4L_v" } }, { "cell_type": "markdown", "source": [ "#### mean Average Precision" ], "metadata": { "id": "gqhAfDv45U72" } }, { "cell_type": "markdown", "source": [ "![image.png]()" ], "metadata": { "id": "G-rjoAqg5LPW" } }, { "cell_type": "markdown", "source": [ "# Calculate Inference Speed" ], "metadata": { "id": "q-H53qT45ryn" } }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 709, "referenced_widgets": [ "b2849ae7a0d64918b022749d8c1a87d5", "d8a9d3941b05413ca2fb9761bdfec3bb", "e3ba8927fd3645beab5e3ac2d4951c4f", "611799b672064285b26f74c9d170fdf9", "692356c44bc9495f813773be6647d096", "6b71f8dec17c43669417e6a900352e80", "c2eaaff20b0e41ecb25814009c099ebf", "6b052403c7d14238ae95ba4361183506" ] }, "id": "9WGkhvfXSijI", "outputId": "e79cda1c-4904-48cb-bb1d-9655bcccd5c1" }, "outputs": [ { "data": { "text/html": [ "Finishing last run (ID:85o1zfoc) before initializing another..." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Waiting for W&B process to finish... (success)." ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b2849ae7a0d64918b022749d8c1a87d5", "version_major": 2, "version_minor": 0 }, "text/plain": [ "VBox(children=(Label(value='0.311 MB of 0.311 MB uploaded (0.000 MB deduped)\\r'), FloatProgress(value=1.0, max…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run jolly-thunder-21 at: https://wandb.ai/nodeflux-internship/kecilin-tech-assessment/runs/85o1zfoc
Synced 5 W&B file(s), 1 media file(s), 3 artifact file(s) and 0 other file(s)" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Find logs at: ./wandb/run-20240310_075427-85o1zfoc/logs" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Successfully finished last run (ID:85o1zfoc). Initializing new run:
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "wandb version 0.16.4 is available! To upgrade, please run:\n", " $ pip install wandb --upgrade" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Tracking run with wandb version 0.15.12" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Run data is saved locally in /content/wandb/run-20240310_080057-3n59nqnj" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "Syncing run unique-darkness-22 to Weights & Biases (docs)
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View project at https://wandb.ai/nodeflux-internship/kecilin-tech-assessment" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ " View run at https://wandb.ai/nodeflux-internship/kecilin-tech-assessment/runs/3n59nqnj" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "" ], "text/plain": [ "" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "wandb.init(project=\"kecilin-tech-assessment\", job_type=\"evaluation\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "Y8iCmJYpw5Ou" }, "outputs": [], "source": [ "model_best = YOLO('/content/best.pt', task='detect')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 101, "referenced_widgets": [ "d44a52bcbd874b709eafa45457856aa9", "b71b6f27f0f44383ba2e8d9b541dec75", "bbfddb3c5df74abca2ccf6885fe3c875", "53b1bf15ef2c46f08d6be392a39002db", "b2126c881d4e45dcae961c69be14f637", "d9dca7f3973a4496a8f2836628e49a09", "972f47f0504e4dae8de4c32a34743023", "4710430554f44a54bb68df8c4ff78c68", "9924385b30a741248b6bf1bb9e1b462c", "799c6388e1af417d8dd3f808e3052f3d", "db26068c72654b0ca98ec159da4c42cf" ] }, "id": "5AIYedpzYy6R", "outputId": "31f10c76-ea50-4b26-9277-1da51d6580e2" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "\n", "0: 640x640 1 Aambulance, 1: 640x640 1 truck, 2: 640x640 1 Aambulance, 1 truck, 3: 640x640 3 Aambulances, 21.5ms\n", "Speed: 1.7ms preprocess, 5.4ms inference, 1.0ms postprocess per image at shape (1, 3, 640, 640)\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d44a52bcbd874b709eafa45457856aa9", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/4 [00:00" ], "application/javascript": [ "\n", " window._wandbApiKey = new Promise((resolve, reject) => {\n", " function loadScript(url) {\n", " return new Promise(function(resolve, reject) {\n", " let newScript = document.createElement(\"script\");\n", " newScript.onerror = reject;\n", " newScript.onload = resolve;\n", " document.body.appendChild(newScript);\n", " newScript.src = url;\n", " });\n", " }\n", " loadScript(\"https://cdn.jsdelivr.net/npm/postmate/build/postmate.min.js\").then(() => {\n", " const iframe = document.createElement('iframe')\n", " iframe.style.cssText = \"width:0;height:0;border:none\"\n", " document.body.appendChild(iframe)\n", " const handshake = new Postmate({\n", " container: iframe,\n", " url: 'https://wandb.ai/authorize'\n", " });\n", " const timeout = setTimeout(() => reject(\"Couldn't auto authenticate\"), 5000)\n", " handshake.then(function(child) {\n", " child.on('authorize', data => {\n", " clearTimeout(timeout)\n", " resolve(data)\n", " });\n", " });\n", " })\n", " });\n", " " ] }, "metadata": {} }, { "output_type": "stream", "name": "stderr", "text": [ "\u001b[34m\u001b[1mwandb\u001b[0m: Logging into wandb.ai. (Learn how to deploy a W&B server locally: https://wandb.me/wandb-server)\n", "\u001b[34m\u001b[1mwandb\u001b[0m: You can find your API key in your browser here: https://wandb.ai/authorize\n", "wandb: Paste an API key from your profile and hit enter, or press ctrl+c to quit:" ] }, { "name": "stdout", "output_type": "stream", "text": [ " ··········\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "\u001b[34m\u001b[1mwandb\u001b[0m: Appending key for api.wandb.ai to your netrc file: /root/.netrc\n" ] }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ "wandb version 0.16.4 is available! To upgrade, please run:\n", " $ pip install wandb --upgrade" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ "Tracking run with wandb version 0.15.12" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ "Run data is saved locally in /content/wandb/run-20240310_103253-y0h609ed" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ "Syncing run true-music-25 to Weights & Biases (docs)
" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ " View project at https://wandb.ai/nodeflux-internship/kecilin-tech-assessment" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "" ], "text/html": [ " View run at https://wandb.ai/nodeflux-internship/kecilin-tech-assessment/runs/y0h609ed" ] }, "metadata": {} }, { "output_type": "execute_result", "data": { "text/plain": [ "YOLO()" ] }, "metadata": {}, "execution_count": 19 } ], "source": [ "wandb.init(project=\"kecilin-tech-assessment\", job_type=\"evaluation\")\n", "\n", "model_int8 = YOLO('/content/best.torchscript', task='detect')\n", "add_wandb_callback(model_int8, enable_model_checkpointing=True)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 118, "referenced_widgets": [ "c3ee10a96d13455c8f015de49750369e", "227418cc6be847d18e940a0dbf300185", "04cedf4be59d46e09c3a8f7eeff43450", "1dfdc4caab1644fd9faabee8e9f089be", "453204342fae4c1a9516cda9164d5312", "040346f7e1244a7290a658b2cbd5586b", "9e676e64cf4d4502b477c4bd2042cbff", "7d08ecec77a846f8afa4393796168b94", "933c867713904112af096423cf0e30f0", "996892f47a234c7ba10c56eb5fea5a70", "c170fd5f56ba4f1f876ce03b62acc9e2" ] }, "id": "a7g50M8RaMgG", "outputId": "f4c440b6-fc2b-46ee-d826-344eb5fd41e8" }, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "Loading /content/best.torchscript for TorchScript inference...\n", "\n", "0: 640x640 1 Aambulance, 1: 640x640 1 truck, 2: 640x640 1 Aambulance, 1 truck, 3: 640x640 3 Aambulances, 20.9ms\n", "Speed: 1.7ms preprocess, 5.2ms inference, 1.0ms postprocess per image at shape (1, 3, 640, 640)\n" ] }, { "output_type": "display_data", "data": { "text/plain": [ " 0%| | 0/4 [00:00\n", "fitness: 0.7800316604589512\n", "keys: ['metrics/precision(B)', 'metrics/recall(B)', 'metrics/mAP50(B)', 'metrics/mAP50-95(B)']\n", "maps: array([ 0.71156, 0.81372, 0.76264])\n", "names: {0: 'Aambulance', 1: 'truck', 2: 'object'}\n", "plot: True\n", "results_dict: {'metrics/precision(B)': 0.9263115112055731, 'metrics/recall(B)': 0.8817990125791239, 'metrics/mAP50(B)': 0.9365922935370529, 'metrics/mAP50-95(B)': 0.7626360345613843, 'fitness': 0.7800316604589512}\n", "save_dir: PosixPath('runs/detect/val4')\n", "speed: {'preprocess': 0.4792109624043599, 'inference': 3.451474674709805, 'loss': 0.001370369851052224, 'postprocess': 2.0100804301234216}" ] }, "metadata": {}, "execution_count": 29 } ] }, { "cell_type": "markdown", "source": [ "Now we get 93.6% mAP@50 and 76.2% map50-9@50-95. A very similar performance with 5x the speed!" ], "metadata": { "id": "P-Gf9S7L7mgb" } } ], "metadata": { "accelerator": "GPU", "colab": { "gpuType": "T4", "provenance": [] }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.0" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "4710430554f44a54bb68df8c4ff78c68": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "53b1bf15ef2c46f08d6be392a39002db": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_799c6388e1af417d8dd3f808e3052f3d", "placeholder": "​", "style": "IPY_MODEL_db26068c72654b0ca98ec159da4c42cf", "value": " 4/4 [00:00<00:00, 26.62it/s]" } }, "611799b672064285b26f74c9d170fdf9": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "692356c44bc9495f813773be6647d096": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6b052403c7d14238ae95ba4361183506": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "6b71f8dec17c43669417e6a900352e80": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "799c6388e1af417d8dd3f808e3052f3d": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "972f47f0504e4dae8de4c32a34743023": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "9924385b30a741248b6bf1bb9e1b462c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "b2126c881d4e45dcae961c69be14f637": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b2849ae7a0d64918b022749d8c1a87d5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "VBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "VBoxView", "box_style": "", "children": [ "IPY_MODEL_d8a9d3941b05413ca2fb9761bdfec3bb", "IPY_MODEL_e3ba8927fd3645beab5e3ac2d4951c4f" ], "layout": "IPY_MODEL_611799b672064285b26f74c9d170fdf9" } }, "b71b6f27f0f44383ba2e8d9b541dec75": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d9dca7f3973a4496a8f2836628e49a09", "placeholder": "​", "style": "IPY_MODEL_972f47f0504e4dae8de4c32a34743023", "value": "100%" } }, "bbfddb3c5df74abca2ccf6885fe3c875": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4710430554f44a54bb68df8c4ff78c68", "max": 4, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_9924385b30a741248b6bf1bb9e1b462c", "value": 4 } }, "c2eaaff20b0e41ecb25814009c099ebf": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d44a52bcbd874b709eafa45457856aa9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_b71b6f27f0f44383ba2e8d9b541dec75", "IPY_MODEL_bbfddb3c5df74abca2ccf6885fe3c875", "IPY_MODEL_53b1bf15ef2c46f08d6be392a39002db" ], "layout": "IPY_MODEL_b2126c881d4e45dcae961c69be14f637" } }, "d8a9d3941b05413ca2fb9761bdfec3bb": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "LabelModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "LabelModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "LabelView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_692356c44bc9495f813773be6647d096", "placeholder": "​", "style": "IPY_MODEL_6b71f8dec17c43669417e6a900352e80", "value": "0.311 MB of 0.325 MB uploaded (0.000 MB deduped)\r" } }, "d9dca7f3973a4496a8f2836628e49a09": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "db26068c72654b0ca98ec159da4c42cf": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "e3ba8927fd3645beab5e3ac2d4951c4f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_c2eaaff20b0e41ecb25814009c099ebf", "max": 1, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_6b052403c7d14238ae95ba4361183506", "value": 0.9561951007562591 } }, "c3ee10a96d13455c8f015de49750369e": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_227418cc6be847d18e940a0dbf300185", "IPY_MODEL_04cedf4be59d46e09c3a8f7eeff43450", "IPY_MODEL_1dfdc4caab1644fd9faabee8e9f089be" ], "layout": "IPY_MODEL_453204342fae4c1a9516cda9164d5312" } }, "227418cc6be847d18e940a0dbf300185": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_040346f7e1244a7290a658b2cbd5586b", "placeholder": "​", "style": "IPY_MODEL_9e676e64cf4d4502b477c4bd2042cbff", "value": "100%" } }, "04cedf4be59d46e09c3a8f7eeff43450": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7d08ecec77a846f8afa4393796168b94", "max": 4, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_933c867713904112af096423cf0e30f0", "value": 4 } }, "1dfdc4caab1644fd9faabee8e9f089be": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_996892f47a234c7ba10c56eb5fea5a70", "placeholder": "​", "style": "IPY_MODEL_c170fd5f56ba4f1f876ce03b62acc9e2", "value": " 4/4 [00:00<00:00, 26.02it/s]" } }, "453204342fae4c1a9516cda9164d5312": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "040346f7e1244a7290a658b2cbd5586b": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9e676e64cf4d4502b477c4bd2042cbff": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "7d08ecec77a846f8afa4393796168b94": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "933c867713904112af096423cf0e30f0": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "996892f47a234c7ba10c56eb5fea5a70": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c170fd5f56ba4f1f876ce03b62acc9e2": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } } } } }, "nbformat": 4, "nbformat_minor": 0 }