import os import cv2 import torch import numpy as np import torchvision from PIL import Image def unnormalize(tens, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]): # assume tensor of shape NxCxHxW return tens * torch.Tensor(std)[None, :, None, None] + torch.Tensor( mean)[None, :, None, None] def get_heatmap_cv(img, magn, max_flow_mag): min_flow_mag = .5 cv_magn = np.clip( 255 * (magn - min_flow_mag) / (max_flow_mag - min_flow_mag), a_min=0, a_max=255).astype(np.uint8) if img.dtype != np.uint8: img = (255 * img).astype(np.uint8) heatmap_img = cv2.applyColorMap(cv_magn, cv2.COLORMAP_JET) heatmap_img = heatmap_img[..., ::-1] h, w = magn.shape img_alpha = np.ones((h, w), dtype=np.double)[:, :, None] heatmap_alpha = np.clip( magn / max_flow_mag, a_min=0, a_max=1)[:, :, None]**.7 heatmap_alpha[heatmap_alpha < .2]**.5 pm_hm = heatmap_img * heatmap_alpha pm_img = img * img_alpha cv_out = pm_hm + pm_img * (1 - heatmap_alpha) cv_out = np.clip(cv_out, a_min=0, a_max=255).astype(np.uint8) return cv_out def get_heatmap_batch(img_batch, pred_batch): imgrid = torchvision.utils.make_grid(img_batch).cpu() magn_batch = torch.norm(pred_batch, p=2, dim=1, keepdim=True) magngrid = torchvision.utils.make_grid(magn_batch) magngrid = magngrid[0, :, :] imgrid = unnormalize(imgrid).squeeze_() cv_magn = magngrid.detach().cpu().numpy() cv_img = imgrid.permute(1, 2, 0).detach().cpu().numpy() cv_out = get_heatmap_cv(cv_img, cv_magn, max_flow_mag=9) out = np.asarray(cv_out).astype(np.double) / 255.0 out = torch.from_numpy(out).permute(2, 0, 1) return out def save_heatmap_cv(img, magn, path, max_flow_mag=7): cv_out = get_heatmap_cv(img, magn, max_flow_mag) out = Image.fromarray(cv_out) out.save(path, quality=95)