#!/usr/bin/env python3 # SPDX-License-Identifier: Apache-2.0 """ Hugging Face Spaces entry point for Raynos AI Audio Transcription App """ import os import sys import torch from pathlib import Path # Add src directory to path so we can import our modules sys.path.insert(0, str(Path(__file__).parent / "src")) # Import the main Gradio app from gradio_app_integrated import create_interface # Optional: Set environment variables if needed # os.environ["CUDA_VISIBLE_DEVICES"] = "0" # Use first GPU if available def main(): """Main entry point for Hugging Face Spaces""" # Check for GPU availability if torch.cuda.is_available(): print(f"🚀 GPU available: {torch.cuda.get_device_name(0)}") print(f" Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.2f} GB") else: print("đŸ’ģ Running on CPU (may be slower)") # Check for Deepgram API key (optional) if os.environ.get("DEEPGRAM_API_KEY"): print("✓ Deepgram API key detected - cloud transcription enabled") else: print("â„šī¸ No DEEPGRAM_API_KEY found - using local Whisper model only") # Create the Gradio interface print("đŸŽ¯ Initializing Raynos AI Audio Transcription...") app = create_interface() # Launch with HF Spaces compatible settings # Note: HF Spaces automatically sets the correct server_name and port app.launch( server_name="0.0.0.0", # Required for HF Spaces server_port=7860, # Default HF Spaces port share=False, # Sharing is handled by HF Spaces show_error=True, # Show detailed errors quiet=False, # Show startup logs ) if __name__ == "__main__": main()