import gradio as gr import torch from transformers import RobertaTokenizerFast, BertTokenizerFast, EncoderDecoderModel LANGUAGES = ["fr", "de", "tu", "es"] models = dict() tokenizers = dict() models_paths = dict() models_paths["fr"] = "mrm8488/camembert2camembert_shared-finetuned-french-summarization" models_paths["de"] = "mrm8488/bert2bert_shared-german-finetuned-summarization" models_paths["tu"] = "mrm8488/bert2bert_shared-turkish-summarization" models_paths["es"] = "Narrativa/bsc_roberta2roberta_shared-spanish-finetuned-mlsum-summarization" device = 'cuda' if torch.cuda.is_available() else 'cpu' for lang in LANGUAGES: tokenizers[lang] = RobertaTokenizerFast.from_pretrained(models_paths[lang]) if lang in ["fr", "es"] else BertTokenizerFast.from_pretrained(models_paths[lang]) models[lang] = EncoderDecoderModel.from_pretrained(models_paths[lang]).to(device) def summarize(lang, text): tokenizer = tokenizers[lang] model = models[lang] inputs = tokenizer([text], padding="max_length", truncation=True, max_length=512, return_tensors="pt") input_ids = inputs.input_ids.to(device) attention_mask = inputs.attention_mask.to(device) output = model.generate(input_ids, attention_mask=attention_mask) return tokenizer.decode(output[0], skip_special_tokens=True) theme = "darkgrass" title = "Multilingual Summarization model (MLSUM)" description = "Gradio Demo for Summarization models trained on MLSUM dataset by Manuel Romero" article = "

More models

" gr.Interface(fn=summarize, inputs=[gr.inputs.Radio(LANGUAGES), gr.inputs.Textbox( lines=7, label="Input Text")], outputs="text", theme=theme, title=title, description=description, article=article, enable_queue=True).launch(inline=False)