import torch import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed, pipeline device = 'cuda' if torch.cuda.is_available() else 'cpu' title = "Santacoder 🎅 bash/shell 🐚 Completion" description = "This is a subspace to make code generation with [SantaCoder fine-tuned on The Stack bash/shell](https://huggingface.co/mrm8488/santacoder-finetuned-the-stack-bash-4)" EXAMPLE_0 = ""#!/bin/bash\n# This script removes files larger than 2MB in the current folder\nfind ." examples = [[EXAMPLE_0, 14, 0.6, 42]] tokenizer = AutoTokenizer.from_pretrained("mrm8488/santacoder-finetuned-the-stack-bash-4") model = AutoModelForCausalLM.from_pretrained("mrm8488/santacoder-finetuned-the-stack-bash-4", trust_remote_code=True).to(device) def code_generation(gen_prompt, max_tokens, temperature=0.6, seed=42): set_seed(seed) pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) generated_text = pipe(gen_prompt, do_sample=True, top_p=0.95, temperature=temperature, max_new_tokens=max_tokens)[0]['generated_text'] return generated_text iface = gr.Interface( fn=code_generation, inputs=[ gr.Textbox(lines=10, label="Input code"), gr.inputs.Slider( minimum=8, maximum=256, step=1, default=8, label="Number of tokens to generate", ), gr.inputs.Slider( minimum=0, maximum=2, step=0.1, default=0.6, label="Temperature", ), gr.inputs.Slider( minimum=0, maximum=1000, step=1, default=42, label="Random seed to use for the generation" ) ], outputs=gr.Textbox(label="Predicted code", lines=10), examples=examples, layout="horizontal", theme="peach", description=description, title=title ) iface.launch()