import torch from transformers import IdeficsForVisionText2Text, AutoProcessor from PIL import Image import gradio as gr model_id = "mrm8488/idefics-9b-ft-describe-diffusion-bf16" device = "cuda" if torch.cuda.is_available() else "cpu" model = IdeficsForVisionText2Text.from_pretrained(model_id, torch_dtype=torch.bfloat16) processor = AutoProcessor.from_pretrained(config.base_model_name_or_path) def predict(prompt, image_url, max_length): image = processor.image_processor.fetch_images(image_url) prompts = [[image, prompt]] inputs = processor(prompts[0], return_tensors="pt").to(device) generated_ids = model.generate(**inputs, max_length=128) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] print(generated_text) return generated_text title = "Midjourney-like Image Captioning with IDEFICS" description = "Gradio Demo for generating Midjourney like captions (describe functionality) with IDEFICS" #article = "
" #examples = [['beatles.jpeg'], ['aurora.jpeg'], ['good_luck.png'], ['pokemons.jpg'], ['donuts.jpg']] io = gr.Interface(fn=image_caption, #inputs=gr.inputs.Image(type='pil'), inputs=[ gr.inputs.Textbox(value="Describe the following image:"), gr.inputs.Textbox(label="image URL", placeholder="Insert the URL of the image to be described"), gr.inputs.Slider(label="Max tokens", value=64, max=128, min=16, step=8) ] outputs=gr.outputs.Textbox(label="IDEFICS Description"), title=title, description=description allow_flagging=False, allow_screenshot=False) io.launch(show_errors=True)