#based on https://github.com/CompVis/taming-transformers import collections import torch from ldm.data.helper_types import Annotation from torch._six import string_classes from torch.utils.data._utils.collate import np_str_obj_array_pattern, default_collate_err_msg_format def custom_collate(batch): r"""source: pytorch 1.9.0, only one modification to original code """ elem = batch[0] elem_type = type(elem) if isinstance(elem, torch.Tensor): out = None if torch.utils.data.get_worker_info() is not None: # If we're in a background process, concatenate directly into a # shared memory tensor to avoid an extra copy numel = sum([x.numel() for x in batch]) storage = elem.storage()._new_shared(numel) out = elem.new(storage) return torch.stack(batch, 0, out=out) elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \ and elem_type.__name__ != 'string_': if elem_type.__name__ == 'ndarray' or elem_type.__name__ == 'memmap': # array of string classes and object if np_str_obj_array_pattern.search(elem.dtype.str) is not None: raise TypeError(default_collate_err_msg_format.format(elem.dtype)) return custom_collate([torch.as_tensor(b) for b in batch]) elif elem.shape == (): # scalars return torch.as_tensor(batch) elif isinstance(elem, float): return torch.tensor(batch, dtype=torch.float64) elif isinstance(elem, int): return torch.tensor(batch) elif isinstance(elem, string_classes): return batch elif isinstance(elem, collections.abc.Mapping): return {key: custom_collate([d[key] for d in batch]) for key in elem} elif isinstance(elem, tuple) and hasattr(elem, '_fields'): # namedtuple return elem_type(*(custom_collate(samples) for samples in zip(*batch))) if isinstance(elem, collections.abc.Sequence) and isinstance(elem[0], Annotation): # added return batch # added elif isinstance(elem, collections.abc.Sequence): # check to make sure that the elements in batch have consistent size it = iter(batch) elem_size = len(next(it)) if not all(len(elem) == elem_size for elem in it): raise RuntimeError('each element in list of batch should be of equal size') transposed = zip(*batch) return [custom_collate(samples) for samples in transposed] raise TypeError(default_collate_err_msg_format.format(elem_type))