import streamlit as st from dotenv import load_dotenv from PyPDF2 import PdfReader from langchain.text_splitter import CharacterTextSplitter from langchain_community.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings from langchain_community.vectorstores import FAISS from langchain_community.chat_models import ChatOpenAI from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from htmlTemplates import css, bot_template, user_template, hide_st_style, footer from langchain_community.llms import HuggingFaceHub from matplotlib import style def get_pdf_text(pdf_docs): text = "" for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text += page.extract_text() return text def get_text_chunks(text): text_splitter = CharacterTextSplitter( separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text) return chunks def get_vectorstore(text_chunks): # embeddings = OpenAIEmbeddings() print("HuggingFaceInstructEmbeddings") model_kwargs = {'device': 'cpu', 'weights_only': True} # embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl", model_kwargs=model_kwargs) embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") print("FAISS.from_texts") vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) print("returning vectorstore") return vectorstore def get_conversation_chain(vectorstore): # llm = ChatOpenAI() llm = HuggingFaceHub(repo_id="google/flan-t5-base", model_kwargs={"temperature":0.5, "max_length":512}) memory = ConversationBufferMemory( memory_key='chat_history', return_messages=True) conversation_chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=vectorstore.as_retriever(), memory=memory ) return conversation_chain def handle_userinput(user_question): if st.session_state.conversation is None: st.error("Please upload PDF data before starting the chat.") return response = st.session_state.conversation({'question': user_question}) st.session_state.chat_history = response['chat_history'] for i, message in enumerate(st.session_state.chat_history): if i % 2 == 0: st.write(user_template.replace( "{{MSG}}", message.content), unsafe_allow_html=True) else: st.write(bot_template.replace( "{{MSG}}", message.content), unsafe_allow_html=True) def main(): load_dotenv() st.set_page_config(page_title="Talk with PDF", page_icon="icon.png") st.write(css, unsafe_allow_html=True) if "conversation" not in st.session_state: st.session_state.conversation = None if "chat_history" not in st.session_state: st.session_state.chat_history = None st.header("Chat with AI with Custom Data 🚀") user_question = st.text_input("Ask a question about your Data:") with st.sidebar: st.subheader("Your documents") pdf_docs = st.file_uploader( "Upload your Data here in PDF format and click on 'Process'", accept_multiple_files=True, type=['pdf']) if st.button("Process"): if pdf_docs is None: st.error("Please upload at least one PDF file.") else: with st.spinner("Processing"): print("get_pdf_text") raw_text = get_pdf_text(pdf_docs) print("get_text_chunks") text_chunks = get_text_chunks(raw_text) print("get_vectorstore") vectorstore = get_vectorstore(text_chunks) print("get_conversation_chain") st.session_state.conversation = get_conversation_chain( vectorstore) print("success") st.success("Your Data has been processed successfully") if user_question: handle_userinput(user_question) st.markdown(hide_st_style, unsafe_allow_html=True) st.markdown(footer, unsafe_allow_html=True) if __name__ == '__main__': main()