#! /usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2023 Imperial College London (Pingchuan Ma) # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) import os import datetime import subprocess import gradio as gr from pipelines.pipeline import InferencePipeline FFMPEG_COMMAND = "-loglevel error -y -r 25 -pix_fmt yuv420p -f mp4" pipelines = { "VSR": InferencePipeline("./configs/LRS3_V_WER19.1.ini", device="cuda:0", face_track=True, detector="retinaface"), "VSR(fast)": InferencePipeline("./configs/LRS3_V_WER19.1.ini", device="cuda:0", face_track=True, detector="mediapipe"), "ASR": InferencePipeline("./configs/LRS3_A_WER1.0.ini", device="cuda:0", face_track=True, detector="retinaface"), "AVSR": InferencePipeline("./configs/LRS3_AV_WER0.9.ini", device="cuda:0", face_track=True, detector="retinaface"), "AVSR(fast)": InferencePipeline("./configs/LRS3_AV_WER0.9.ini", device="cuda:0", face_track=True, detector="mediapipe") } print("Step 0. Model has been loaded.") def fn(pipeline_type, filename): directory = "./tmp_video" if not os.path.exists(directory): os.makedirs(directory) now = datetime.datetime.now() timestamp = now.strftime("%Y-%m-%d_%H-%M-%S") dst_filename = f"{directory}/file_{timestamp}.mp4" command_string = f"ffmpeg -i {filename} {FFMPEG_COMMAND} {dst_filename}" print("Step 0. Video has been uploaded.") os.system(command_string) selected_pipeline_instance = pipelines[pipeline_type] print("Step 1. Video has been converted.") landmarks = selected_pipeline_instance.process_landmarks(dst_filename, landmarks_filename=None) print("Step 2. Landmarks have been detected.") data = selected_pipeline_instance.dataloader.load_data(dst_filename, landmarks) print("Step 3. Data has been preprocessed.") transcript = selected_pipeline_instance.model.infer(data) print("Step 4. Inference has been done.") print(f"transcript: {transcript}") return transcript demo = gr.Blocks() with demo: gr.HTML( """
We share this demo only for non-commercial purposes.