import os
import gradio as gr
from pipelines.pipeline import InferencePipeline
TITLE = """
Auto-AVSR: Audio-Visual Speech Recognition with Automatic Labels
Want to recognise the content from audio or visual information?
The Auto-AVSR is here to get you answers!
"""
ARTICLE = """
Server busy? You can also run on Google Colab
We share this demo only for non-commercial purposes.
"""
CSS = """
#col-container {margin-left: auto; margin-right: auto;}
a {text-decoration-line: underline; font-weight: 600;}
.animate-spin {
animation: spin 1s linear infinite;
}
@keyframes spin {
from { transform: rotate(0deg); }
to { transform: rotate(360deg); }
}
#share-btn-container {
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
}
#share-btn {
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;
}
#share-btn * {
all: unset;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
"""
pipelines = {
"VSR(mediapipe)": InferencePipeline("./configs/LRS3_V_WER19.1.ini", device="cpu", face_track=True, detector="mediapipe"),
"ASR": InferencePipeline("./configs/LRS3_A_WER1.0.ini", device="cpu", face_track=True, detector="mediapipe"),
"AVSR(mediapipe)": InferencePipeline("./configs/LRS3_AV_WER0.9.ini", device="cpu", face_track=True, detector="mediapipe")
}
print("Step 0. Model has been loaded.")
def fn(pipeline_type, filename):
print("Step 0. Video has been uploaded.")
selected_pipeline_instance = pipelines[pipeline_type]
print("Step 1. Video has been converted.")
landmarks = selected_pipeline_instance.process_landmarks(filename, landmarks_filename=None)
print("Step 2. Landmarks have been detected.")
data = selected_pipeline_instance.dataloader.load_data(filename, landmarks)
print("Step 3. Data has been preprocessed.")
transcript = selected_pipeline_instance.model.infer(data)
print("Step 4. Inference has been done.")
print(f"transcript: {transcript}")
return transcript
demo = gr.Blocks(css=CSS)
with demo:
gr.HTML(TITLE)
dropdown_list = gr.inputs.Dropdown(["ASR", "VSR(mediapipe)", "AVSR(mediapipe)"], label="model")
video_file = gr.Video(label="INPUT VIDEO", include_audio=True)
text = gr.Textbox(label="PREDICTION")
btn = gr.Button("Submit").style(full_width=True)
btn.click(fn, inputs=[dropdown_list, video_file], outputs=text)
gr.HTML(ARTICLE)
demo.launch()